Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA.
Department of Psychiatry and Behavior Sciences, Emory University, Atlanta, Georgia, USA.
Biometrics. 2023 Sep;79(3):1947-1958. doi: 10.1111/biom.13809. Epub 2022 Dec 27.
Collecting neuroimaging data in the form of tensors (i.e. multidimensional arrays) has become more common in mental health studies, driven by an increasing interest in studying the associations between neuroimaging phenotypes and clinical disease manifestation. Motivated by a neuroimaging study of post-traumatic stress disorder (PTSD) from the Grady Trauma Project, we study a tensor response quantile regression framework, which enables novel analyses that confer a detailed view of the potentially heterogeneous association between a neuroimaging phenotype and relevant clinical predictors. We adopt a sensible low-rank structure to represent the association of interest, and propose a simple two-step estimation procedure which is easy to implement with existing software. We provide rigorous theoretical justifications for the intuitive two-step procedure. Simulation studies demonstrate good performance of the proposed method with realistic sample sizes in neuroimaging studies. We conduct the proposed tensor response quantile regression analysis of the motivating PTSD study to investigate the association between fMRI resting-state functional connectivity and PTSD symptom severity. Our results uncover non-homogeneous effects of PTSD symptoms on brain functional connectivity, which cannot be captured by existing tensor response methods.
在精神健康研究中,以张量(即多维数组)形式收集神经影像学数据变得越来越普遍,这是由于人们越来越感兴趣地研究神经影像学表型与临床疾病表现之间的关联。受 Grady Trauma 项目中创伤后应激障碍(PTSD)神经影像学研究的启发,我们研究了张量响应分位数回归框架,该框架能够进行新的分析,从而更详细地了解神经影像学表型与相关临床预测因子之间的潜在异质关联。我们采用合理的低秩结构来表示感兴趣的关联,并提出了一种简单的两步估计程序,该程序易于使用现有的软件实现。我们为直观的两步程序提供了严格的理论依据。模拟研究表明,该方法在具有实际样本量的神经影像学研究中具有良好的性能。我们对有启发性的 PTSD 研究进行了张量响应分位数回归分析,以研究 fMRI 静息态功能连接与 PTSD 症状严重程度之间的关联。我们的结果揭示了 PTSD 症状对大脑功能连接的非均匀影响,这是现有张量响应方法无法捕捉到的。