Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
Applied Stem Cell Technologies, University of Twente, 7500AE Enschede, The Netherlands.
Lab Chip. 2022 Dec 20;23(1):168-181. doi: 10.1039/d2lc00686c.
Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs.
三维(3D)血管芯片(VoC)模型将血管壁的生物学复杂性与动态微环境线索(如壁切应力(WSS)和周向应变(CS))相结合。然而,由于单个 3D-VoC 的固有直径变化很大,这些参数难以控制,并且常常重现性差。因此,目前 3D 系统的通量是一次一个通道。在这里,我们开发了一种流体电路板(FCB),可使用单个设定的控制参数同时灌注多达 12 个 3D-VoC。通过适当设计 FCB 中的内部液压阻力,可以向所有连接的 3D-VoC 提供预设的 WSS,尽管管腔直径有很大差异。使用该 FCB,我们发现 CS 或 WSS 的变化会引起人诱导多能干细胞(hiPSC)衍生的内皮细胞(EC)的形态变化,并得出结论,使用 FCB 控制这些参数对于研究 3D-VOC 是必要的。