Suppr超能文献

EasySMPC:一个简单而强大的实用安全多方计算无代码工具。

EasySMPC: a simple but powerful no-code tool for practical secure multiparty computation.

机构信息

Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Medical Informatics Group, Charitéplatz 1, 10117, Berlin, Germany.

Computational Biology and Simulation, TU Darmstadt, Darmstadt, Germany.

出版信息

BMC Bioinformatics. 2022 Dec 9;23(1):531. doi: 10.1186/s12859-022-05044-8.

Abstract

BACKGROUND

Modern biomedical research is data-driven and relies heavily on the re-use and sharing of data. Biomedical data, however, is subject to strict data protection requirements. Due to the complexity of the data required and the scale of data use, obtaining informed consent is often infeasible. Other methods, such as anonymization or federation, in turn have their own limitations. Secure multi-party computation (SMPC) is a cryptographic technology for distributed calculations, which brings formally provable security and privacy guarantees and can be used to implement a wide-range of analytical approaches. As a relatively new technology, SMPC is still rarely used in real-world biomedical data sharing activities due to several barriers, including its technical complexity and lack of usability.

RESULTS

To overcome these barriers, we have developed the tool EasySMPC, which is implemented in Java as a cross-platform, stand-alone desktop application provided as open-source software. The tool makes use of the SMPC method Arithmetic Secret Sharing, which allows to securely sum up pre-defined sets of variables among different parties in two rounds of communication (input sharing and output reconstruction) and integrates this method into a graphical user interface. No additional software services need to be set up or configured, as EasySMPC uses the most widespread digital communication channel available: e-mails. No cryptographic keys need to be exchanged between the parties and e-mails are exchanged automatically by the software. To demonstrate the practicability of our solution, we evaluated its performance in a wide range of data sharing scenarios. The results of our evaluation show that our approach is scalable (summing up 10,000 variables between 20 parties takes less than 300 s) and that the number of participants is the essential factor.

CONCLUSIONS

We have developed an easy-to-use "no-code solution" for performing secure joint calculations on biomedical data using SMPC protocols, which is suitable for use by scientists without IT expertise and which has no special infrastructure requirements. We believe that innovative approaches to data sharing with SMPC are needed to foster the translation of complex protocols into practice.

摘要

背景

现代生物医学研究是数据驱动的,严重依赖于数据的重复使用和共享。然而,生物医学数据受到严格的数据保护要求的限制。由于所需数据的复杂性和数据使用的规模,获得知情同意往往是不可行的。其他方法,如匿名化或联邦,反过来也有其自身的局限性。安全多方计算(SMPC)是一种用于分布式计算的密码技术,它带来了形式上可证明的安全性和隐私性保证,可以用于实现广泛的分析方法。作为一种相对较新的技术,由于技术复杂性和缺乏可用性等几个障碍,SMPC 在现实世界的生物医学数据共享活动中仍然很少使用。

结果

为了克服这些障碍,我们开发了工具 EasySMPC,它是用 Java 实现的跨平台独立桌面应用程序,作为开源软件提供。该工具利用 SMPC 方法算术秘密共享,允许在两轮通信(输入共享和输出重建)中在不同方之间安全地加总预定义的变量集,并将该方法集成到图形用户界面中。不需要设置或配置其他软件服务,因为 EasySMPC 使用最广泛的数字通信渠道:电子邮件。各方之间不需要交换加密密钥,并且软件自动交换电子邮件。为了证明我们解决方案的实用性,我们在广泛的数据共享场景中评估了它的性能。我们的评估结果表明,我们的方法是可扩展的(在 20 个方之间加总 10000 个变量不到 300 秒),并且参与者的数量是关键因素。

结论

我们开发了一种易于使用的“无代码解决方案”,用于使用 SMPC 协议对生物医学数据进行安全联合计算,适合没有 IT 专业知识的科学家使用,并且没有特殊的基础设施要求。我们认为,需要创新的数据共享方法来促进复杂协议向实践的转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9440/9733077/85f72e3ff4a2/12859_2022_5044_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验