Louros Susana R, Seo Sang S, Maio Beatriz, Martinez-Gonzalez Cristina, Gonzalez-Lozano Miguel A, Muscas Melania, Verity Nick C, Wills Jimi C, Li Ka Wan, Nolan Matthew F, Osterweil Emily K
Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Neuron. 2023 Feb 15;111(4):508-525.e7. doi: 10.1016/j.neuron.2022.11.012. Epub 2022 Dec 9.
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1 mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1 neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
在脆性X综合征(FX)中,这是自闭症的主要单基因病因,神经元蛋白质合成过多是核心病理生理学特征;然而,并未观察到蛋白质表达的整体增加。在此,我们测试了蛋白质合成过多是否会驱动蛋白质降解的代偿性增加,这对FX小鼠模型(Fmr1)神经元具有保护作用。令人惊讶的是,尽管我们发现通过泛素蛋白酶体系统(UPS)蛋白质降解显著增加,但这却导致了病理变化。用硼替佐米使蛋白酶体活性正常化可纠正海马体中过多的蛋白质合成以及下丘(IC)神经元对听觉刺激的过度激活。此外,硼替佐米的全身给药显著降低了Fmr1小鼠听源性癫痫(AGS)的发生率和严重程度,蛋白酶体的基因减少也有同样效果,特别是在下丘中。总之,这些结果表明Fmr1神经元中UPS途径的过度激活是多种表型的一个促成因素,可作为治疗干预的靶点。