Suppr超能文献

非小细胞肺癌细胞对 PI3K/mTOR 抑制剂的耐药性是由 Δ6 脂肪酸去饱和酶(FADS2)介导的。

NSCLC Cells Resistance to PI3K/mTOR Inhibitors Is Mediated by Delta-6 Fatty Acid Desaturase (FADS2).

机构信息

Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.

出版信息

Cells. 2022 Nov 22;11(23):3719. doi: 10.3390/cells11233719.

Abstract

Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.

摘要

磷脂酰肌醇-3-激酶(PI3K)途径的过度激活是人类癌症中最常见的事件之一。人们已经做出了一些努力来鉴定选择性的 PI3K 途径抑制剂。然而,由于意外的毒性、潜在应答患者的选择以及对治疗的内在抗性,这些分子的成功受到了部分限制。代谢改变与耐药性密切相关;改变的代谢途径可以帮助癌细胞适应持续的药物暴露并发展出耐药表型。在这里,我们报告了非小细胞肺癌(NSCLC)细胞系对常用的 PI3K-mTOR 抑制剂 BEZ235 耐药的代谢改变。在这项研究中,我们发现脂质种类的不饱和程度增加与耐药表型细胞中质膜流动性增加有关,脂肪酸去饱和酶 FADS2 介导获得化疗耐药性。因此,基于膜脂质修饰来逆转耐药性的新研究应该考虑去饱和酶活性的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/9736998/bac2d287f568/cells-11-03719-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验