Suppr超能文献

基于机器学习的物联网自动化监测 TDD 框架。

A TDD Framework for Automated Monitoring in Internet of Things with Machine Learning.

机构信息

Polytechnic School (EPUSP), University of São Paulo, São Paulo 05508-010, Brazil.

Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo, São Paulo 13566-590, Brazil.

出版信息

Sensors (Basel). 2022 Dec 5;22(23):9498. doi: 10.3390/s22239498.

Abstract

Robust, fault tolerant, and available systems are fundamental for the adoption of Internet of Things (IoT) in critical domains, such as finance, health, and safety. The IoT infrastructure is often used to collect a large amount of data to meet the business demands of Smart Cities, Industry 4.0, and Smart Home, but there is a opportunity to use these data to intrinsically monitor an IoT system in an autonomous way. A Test Driven Development (TDD) approach for automatic module assessment for ESP32 and ESP8266 IoT development devices based on unsupervised Machine Learning (ML) is proposed to monitor IoT device status. A framework consisting of business drivers, non-functional requirements, engineering view, dynamic system evaluation, and recommendations phases is proposed to be used with the TDD development tool. The proposal is evaluated in academic and smart home study cases with 25 devices, consisting of 15 different firmware versions collected in one week, with a total of over 550,000 IoT status readings. The K-Means algorithm was applied to free memory available, internal temperature, and Wi-Fi level metrics to automatically monitor the IoT devices under development to identify device constraints violation and provide insights for monitoring frequency configuration of different firmware versions. To the best of the authors' knowledge, it is the first TDD approach for IoT module automatic assessment which uses machine learning based on the real testbed data. The IoT status monitoring and the Python scripts for model training and inference with K-Means algorithm are available under a Creative Commons license.

摘要

健壮、容错和可用的系统对于在金融、健康和安全等关键领域采用物联网 (IoT) 至关重要。物联网基础设施通常用于收集大量数据,以满足智慧城市、工业 4.0 和智能家居的业务需求,但也有机会使用这些数据以自主的方式对物联网系统进行内在监控。提出了一种基于无监督机器学习 (ML) 的针对 ESP32 和 ESP8266 IoT 开发设备的自动模块评估的测试驱动开发 (TDD) 方法,以监控 IoT 设备状态。提出了一个包含业务驱动因素、非功能需求、工程视图、动态系统评估和建议阶段的框架,与 TDD 开发工具一起使用。该提案在学术和智能家居案例中进行了评估,涉及 25 个设备,其中包括在一周内收集的 15 个不同的固件版本,总共超过 550,000 个 IoT 状态读数。应用 K-Means 算法对可用的空闲内存、内部温度和 Wi-Fi 级别指标进行自动监控,以识别开发中物联网设备的约束违规,并为不同固件版本的监控频率配置提供见解。据作者所知,这是第一个基于真实测试平台数据的基于机器学习的物联网模块自动评估的 TDD 方法。物联网状态监控和用于 K-Means 算法的模型训练和推理的 Python 脚本可根据知识共享许可获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d3a/9739385/3a239a3f4ce5/sensors-22-09498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验