Wang Junbo, Yang Xiusong, Yu Songcan, Yuan Qing, Lian Zhuotao, Yang Qinglin
School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, 518107, PR China.
Guangdong Provincial Key Laboratory of Intelligent Transportation System, Sun Yat-Sen University, Shenzhen, 510275, PR China.
Comput Commun. 2023 Jan 15;198:195-205. doi: 10.1016/j.comcom.2022.12.002. Epub 2022 Dec 7.
Road crashes are a major problem for traffic safety management, which usually causes flash crowd traffic with a profound influence on traffic management and communication systems. In 2020, the sudden outbreak of the novel coronavirus disease (COVID-19) pandemic led to significant changes in road traffic conditions. In this paper, by analyzing crash data from 2016 to 2020 and new COVID-19 case data in 2020, we find that the average crash severity and crash deaths during this period (a rapid increase of new COVID-19 cases in 2020) are higher than those in previous four years. Hence, it is necessary to exploit a novel road crash risk prediction model for such an emergency. We propose a novel data-adaptive fatigue focal loss (DA-FFL) method by fusing fatigue factors to establish a road crash risk prediction model under the scenario of large-scale emergencies. Finally, the experimental results demonstrate that DA-FFL performs better than the other typical methods in terms of area under curve (AUC) and false alarm rate (FAR) for imbalanced data. Furthermore, DA-FFL has better prediction performance in convolutional neural networks-long short-term memory (CNN-LSTM).
道路交通事故是交通安全管理的一个主要问题,通常会引发人群聚集交通,对交通管理和通信系统产生深远影响。2020年,新型冠状病毒病(COVID-19)大流行的突然爆发导致道路交通状况发生了重大变化。在本文中,通过分析2016年至2020年的事故数据以及2020年的新增COVID-19病例数据,我们发现这一时期(2020年新增COVID-19病例迅速增加)的平均事故严重程度和事故死亡人数高于前四年。因此,有必要针对此类紧急情况开发一种新型的道路交通事故风险预测模型。我们通过融合疲劳因素提出了一种新型的数据自适应疲劳焦点损失(DA-FFL)方法,以建立大规模紧急情况下的道路交通事故风险预测模型。最后,实验结果表明,在处理不平衡数据时,DA-FFL在曲线下面积(AUC)和误报率(FAR)方面比其他典型方法表现更好。此外,DA-FFL在卷积神经网络-长短期记忆(CNN-LSTM)中具有更好的预测性能。