Translational Health Science and Technology Institute, Faridabad, Haryana, India.
Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.
Microbiol Spectr. 2023 Feb 14;11(1):e0197322. doi: 10.1128/spectrum.01973-22. Epub 2022 Dec 12.
In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.
为了适应宿主组织,微生物病原体通过多种转录因子来调节基因表达。在这里,我们对结核分枝杆菌的 HutC 同源物 Rv0792c 进行了功能表征。与亲本菌株相比,一株含有 Rv0792c 突变的结核分枝杆菌菌株在暴露于氧化应激和豚鼠感染时的生存能力受损。RNA 测序分析显示,Rv0792c 调节与结核分枝杆菌应激适应和毒力相关的基因表达。溶液小角 X 射线散射 (SAXS) 数据导向的模型构建证实,C 端区域在二聚体形成中起关键作用。系统进化的配体指数富集 (SELEX) 导致鉴定出能够用作鉴定针对 Rv0792c 的小分子抑制剂的单链 DNA (ssDNA) 适体。使用 SELEX 和基于 SAXS 数据的建模,我们鉴定了与 Rv0792c 的适体结合活性相关的必需残基。在这项研究中,我们还确定了 I-OMe-Tyrphostin 是 Rv0792c 的适体和 DNA 结合活性的抑制剂。鉴定的小分子降低了巨噬细胞内结核分枝杆菌的生长。因此,本研究提供了结核分枝杆菌 HutC 家族转录因子的详细形状功能特征。 原核生物编码大量 GntR 家族转录因子,这些转录因子参与各种基本的生物学过程,包括应激适应和发病机制。在这里,我们研究了 Rv0792c 的结构和功能作用,Rv0792c 是结核分枝杆菌的 HutC 同源物。我们证明 Rv0792c 对于结核分枝杆菌适应氧化应激和在豚鼠中建立疾病是必不可少的。使用指数富集的配体系统进化 (SELEX) 方法,我们从随机 ssDNA 文库中鉴定出与 Rv0792c 蛋白结合的 ssDNA 适体。使用生化和生物物理测定法对这些适体进行了彻底表征。使用 SAXS,我们确定了在存在和不存在适体的情况下 Rv0792c 的结构模型。此外,使用 SELEX 和 SAXS 方法的组合,我们确定了 I-OMe-Tyrphostin 是 Rv0792c 的潜在抑制剂。在这里,我们提供了结核分枝杆菌 HutC 家族转录因子的详细功能表征。