Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001Reḥovot, Israel.
J Phys Chem A. 2022 Dec 22;126(50):9375-9391. doi: 10.1021/acs.jpca.2c06407. Epub 2022 Dec 12.
We report an update and enhancement of the ACONFL (conformer energies of large alkanes [, 3521-3535]) dataset. For the ACONF12 (-dodecane) subset, we report basis set limit canonical coupled-cluster with singles, doubles, and perturbative triples [i.e., CCSD(T)] reference data obtained from the MP2-F12/cc-pV{T,Q}Z-F12 extrapolation, [CCSD(F12*)-MP2-F12]/aug-cc-pVTZ-F12, and a (T) correction from conventional CCSD(T)/aug-cc-pV{D,T}Z calculations. Then, we explored the performance of a variety of single and composite localized-orbital CCSD(T) approximations, ultimately finding an affordable localized natural orbital CCSD(T) [LNO-CCSD(T)]-based post-MP2 correction that agrees to 0.006 kcal/mol mean absolute deviation with the revised canonical reference data. In tandem with canonical MP2-F12 complete basis set extrapolation, this was then used to re-evaluate the ACONF16 and ACONF20 subsets for hexadecane and icosane, respectively. Combining those with the revised canonical reference data for the dodecane conformers (i.e., ACONF12 subset), a revised ACONFL set was obtained. It was then used to assess the performance of different localized-orbital coupled-cluster approaches, such as pair natural orbital localized CCSD(T) [PNO-LCCSD(T)] as implemented in MOLPRO, DLPNO-CCSD(T) and DLPNO-CCSD(T) as implemented in ORCA, and LNO-CCSD(T) as implemented in MRCC, at their respective "Normal", "Tight", "vTight", and "vvTight" accuracy settings. For a given accuracy threshold and basis set, DLPNO-CCSD(T) and DLPNO-CCSD(T) perform comparably. With "VeryTightPNO" cutoffs, explicitly correlated DLPNO-CCSD(T)-F12/VDZ-F12 is the best pick among all the DLPNO-based methods tested. To isolate basis set incompleteness from localized-orbital-related truncation errors (domain, LNOs), we have also compared the localized coupled-cluster approaches with canonical DF-CCSD(T)/aug-cc-pVTZ for the ACONF12 set. We found that gradually tightening the cutoffs improves the performance of LNO-CCSD(T), and using a composite scheme such as vTight + 0.50[vTight - Tight] improves things further. For DLPNO-CCSD(T), "TightPNO" and "VeryTightPNO" offer a statistically similar accuracy, which gets slightly better when T is extrapolated to the complete PNO space limit. Similar to Brauer et al.'s [ (31), 20905-20925] previous report for the S66x8 noncovalent interactions, the dispersion-corrected direct random phase approximation (dRPA)-based double hybrids perform remarkably well for the ACONFL set. While the revised reference data do not affect any conclusions on the less accurate methods, they may upend orderings for more accurate methods with error statistics on the same order as the difference between reference datasets.
我们报告了 ACONFL(长链烷烃构象能[,3521-3535])数据集的更新和增强。对于 ACONF12(-十二烷)子集,我们报告了基于 MP2-F12/cc-pV{T,Q}Z-F12 外推的基组限制正则耦合簇加上单、双和微扰三的 CCSD(T)参考数据,[CCSD(F12*)-MP2-F12]/aug-cc-pVTZ-F12 和来自传统 CCSD(T)/aug-cc-pV{D,T}Z 计算的(T)校正。然后,我们探索了各种单和复合局域轨道 CCSD(T)逼近的性能,最终找到了一种负担得起的局域自然轨道 CCSD(T)[LNO-CCSD(T)]后 MP2 校正,与修订后的正则参考数据的平均绝对偏差为 0.006 kcal/mol。与正则 MP2-F12 完全基组外推相结合,然后用于重新评估分别针对十六烷和二十烷的 ACONF16 和 ACONF20 子集。将这些与修订后的正十二烷构象的参考数据(即,ACONF12 子集)结合起来,获得了修订后的 ACONFL 集。然后,它被用于评估不同局域轨道耦合簇方法的性能,例如在 MOLPRO 中实现的对映体自然轨道局域 CCSD(T)[PNO-LCCSD(T)]、在 ORCA 中实现的 DLPNO-CCSD(T)和 DLPNO-CCSD(T),以及在 MRCC 中实现的 LNO-CCSD(T),分别在其各自的“Normal”、“Tight”、“vTight”和“vvTight”精度设置下。对于给定的精度阈值和基组,DLPNO-CCSD(T)和 DLPNO-CCSD(T)的性能相当。对于“VeryTightPNO”截止值,所有测试的基于 DLPNO 的方法中,显式相关的 DLPNO-CCSD(T)-F12/VDZ-F12 是最佳选择。为了将基组不完整性与局域轨道相关的截断误差(域、LNO)隔离开来,我们还比较了局域耦合簇方法与用于 ACONF12 集的正则 DF-CCSD(T)/aug-cc-pVTZ。我们发现,逐渐收紧截止值可以提高 LNO-CCSD(T)的性能,并且使用复合方案(如 vTight + 0.50[vTight - Tight])可以进一步提高性能。对于 DLPNO-CCSD(T),“TightPNO”和“VeryTightPNO”提供了统计上相似的精度,当 T 外推到完整的 PNO 空间极限时,精度会略有提高。类似于 Brauer 等人[(31),20905-20925]之前对 S66x8 非共价相互作用的报告,基于色散校正直接随机相位近似(dRPA)的双杂化对 ACONFL 集的性能非常出色。虽然修订后的参考数据不会影响任何关于较不准确方法的结论,但它们可能会颠覆更准确方法的排序,其误差统计与参考数据集之间的差异相同。