Suppr超能文献

探索美国原住民社区中的物质使用障碍讨论:一项回顾性的推特信息流行病学研究。

Exploring substance use disorder discussions in Native American communities: a retrospective Twitter infodemiology study.

机构信息

UC San Diego School of Medicine, La Jolla, CA, USA.

UC San Diego Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA.

出版信息

Harm Reduct J. 2022 Dec 14;19(1):141. doi: 10.1186/s12954-022-00728-z.

Abstract

BACKGROUND

The opioid epidemic has had a devastating impact on youth from American Indian and Alaska Native (AI/AN) Tribes and Villages, which also experience disparate suicide rates. The use of publicly available social media data originating from AI/AN communities may enhance public health response time to substance use disorder (SUD)-related overdose and augment Tribal public health surveillance systems, but these concepts have yet to be adequately explored. The goal of this exploratory analysis was to identify primary and secondary accounts of overdose and characterize relevant contextual factors in the AI/AN population on social media.

METHODS

The Twitter application programming interface was queried for all Tweets containing geocoded data between March 2014 and June 2020 and filtered for the keyword ['overdose']. This sample of Tweets (n = 146,236) was then restricted to those geolocated from US Tribal lands (n = 619). Tweets were manually annotated for primary or secondary accounts of overdose as well as suicidal ideation, substance(s) used, stigma of drug use, and community-wide incidents.

RESULTS

We collected a total of 146,235 tweets that were geocoded and contained the word 'overdose,' of which 9.5% were posted on Tribal lands (n = 619). 9.4% of these tweets (n = 58) met our study inclusion criteria and were mainly posted from Oklahoma (n = 26, 45%) and North Carolina (n = 13, 22.4%). Most Tweets (n = 41, 71%) described a primary account of an overdose and were mostly posted from 2014 to 2015. Less than half of the Tweets (n = 27, 46.5%) referenced a specific substance. Those substances mentioned included alcohol, marijuana, methamphetamine, heroin, laundry softener, cocaine, K2-Spice (synthetic cannabinoid), codeine, morphine, Nyquil, and Xanax.

DISCUSSION

Though exploratory, our study identified SUD-related content self-reported by AI/AN communities on Twitter, especially in Oklahoma and North Carolina. These results may assist in the future design and detection of infodemiology trends and early warning signs that can better facilitate intervention specific to the ongoing Tribal opioid epidemic. While all data were collected from the public domain, additional care should be given to individual and community privacy.

摘要

背景

阿片类药物泛滥对美国印第安人和阿拉斯加原住民(AI/AN)部落和村庄的年轻人造成了毁灭性的影响,这些部落和村庄的自杀率也存在差异。利用来自 AI/AN 社区的公开可用社交媒体数据可能会增强公共卫生对药物使用障碍(SUD)相关过量用药的反应时间,并增强部落公共卫生监测系统,但这些概念尚未得到充分探索。本探索性分析的目的是确定 AI/AN 人群在社交媒体上与过量用药相关的主要和次要账户,并描述相关的背景因素。

方法

使用 Twitter 应用程序接口查询 2014 年 3 月至 2020 年 6 月期间包含地理编码数据的所有推文,并对关键字['过量用药']进行过滤。对该推文样本(n=146236)进行限制,使其地理定位在美国部落土地上(n=619)。对推文进行手动注释,以确定过量用药的主要或次要账户,以及自杀意念、使用的物质、药物使用的耻辱感和社区范围的事件。

结果

我们共收集了 146235 条推文,这些推文进行了地理编码,并包含“过量用药”一词,其中 9.5%(n=619)发布在部落土地上。这些推文的 9.4%(n=58)符合我们的研究纳入标准,主要来自俄克拉荷马州(n=26,45%)和北卡罗来纳州(n=13,22.4%)。大多数推文(n=41,71%)描述了一次过量用药的主要病例,并且主要是在 2014 年至 2015 年期间发布的。不到一半的推文(n=27,46.5%)提到了特定的物质。提到的物质包括酒精、大麻、冰毒、海洛因、衣物柔软剂、可卡因、K2-香料(合成大麻素)、可待因、吗啡、Nyquil 和 Xanax。

讨论

虽然是探索性的,但我们的研究在 Twitter 上识别了 AI/AN 社区自我报告的 SUD 相关内容,特别是在俄克拉荷马州和北卡罗来纳州。这些结果可能有助于未来设计和检测传染病趋势和早期预警信号,以便更好地针对部落阿片类药物泛滥问题进行干预。虽然所有数据都是从公共领域收集的,但应该更加注意个人和社区的隐私。

相似文献

3
Using Twitter to Surveil the Opioid Epidemic in North Carolina: An Exploratory Study.
JMIR Public Health Surveill. 2020 Jun 24;6(2):e17574. doi: 10.2196/17574.
5
Exploring Substance Use Tweets of Youth in the United States: Mixed Methods Study.
JMIR Public Health Surveill. 2020 Mar 26;6(1):e16191. doi: 10.2196/16191.
7
Automating Detection of Drug-Related Harms on Social Media: Machine Learning Framework.
J Med Internet Res. 2023 Sep 19;25:e43630. doi: 10.2196/43630.
9
Online Conversation Monitoring to Understand the Opioid Epidemic: Epidemiological Surveillance Study.
JMIR Public Health Surveill. 2020 Jun 29;6(2):e17073. doi: 10.2196/17073.

本文引用的文献

1
Disparities in Opioid Overdose Death Trends by Race/Ethnicity, 2018-2019, From the HEALing Communities Study.
Am J Public Health. 2021 Oct;111(10):1851-1854. doi: 10.2105/AJPH.2021.306431. Epub 2021 Sep 9.
2
Implications of Twitter in Health-Related Research: A Landscape Analysis of the Scientific Literature.
Front Public Health. 2021 Jul 9;9:654481. doi: 10.3389/fpubh.2021.654481. eCollection 2021.
5
Drug and Opioid-Involved Overdose Deaths - United States, 2017-2018.
MMWR Morb Mortal Wkly Rep. 2020 Mar 20;69(11):290-297. doi: 10.15585/mmwr.mm6911a4.
7
Drug and Opioid-Involved Overdose Deaths - United States, 2013-2017.
MMWR Morb Mortal Wkly Rep. 2018 Jan 4;67(5152):1419-1427. doi: 10.15585/mmwr.mm675152e1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验