Suppr超能文献

验证传统预后评分系统和骨骼肿瘤研究组列线图在预测接受手术治疗的脊柱转移瘤患者生存情况中的应用。

Validation of Traditional Prognosis Scoring Systems and Skeletal Oncology Research Group Nomogram for Predicting Survival of Spinal Metastasis Patients Undergoing Surgery.

机构信息

Department of Orthopedic, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Orthopedic Unit, Banphaeo General Hospital, Samutsakhon, Thailand.

出版信息

Clin Orthop Surg. 2022 Dec;14(4):548-556. doi: 10.4055/cios22014. Epub 2022 Jul 25.

Abstract

BACKGROUND

Many scoring systems that predict overall patient survival are based on clinical parameters and primary tumor type. To date, no consensus exists regarding which scoring system has the greatest predictive survival accuracy, especially when applied to specific primary tumors. Additionally, such scores usually fail to include modern treatment modalities, which influence patient survival. This study aimed to evaluate both the overall predictive accuracy of such scoring systems and the predictive accuracy based on the primary tumor.

METHODS

A retrospective review on spinal metastasis patients who were aged more than 18 years and underwent surgical treatment was conducted between October 2008 and August 2018. Patients were scored based on data before the time of surgery. A survival probability was calculated for each patient using the given scoring systems. The predictive ability of each scoring system was assessed using receiver operating characteristic analysis at postoperative time points; area under the curve was then calculated to quantify predictive accuracy.

RESULTS

A total of 186 patients were included in this analysis: 101 (54.3%) were men and the mean age was 57.1 years. Primary tumors were lung in 37 (20%), breast in 26 (14%), prostate in 20 (10.8%), hematologic malignancy in 18 (9.7%), thyroid in 10 (5.4%), gastrointestinal tumor in 25 (13.4%), and others in 40 (21.5%). The primary tumor was unidentified in 10 patients (5.3%). The overall survival was 201 days. For survival prediction, the Skeletal Oncology Research Group (SORG) nomogram showed the highest performance when compared to other prognosis scores in all tumor metastasis but a lower performance to predict survival with lung cancer. The revised Katagiri score demonstrated acceptable performance to predict death for breast cancer metastasis. The Tomita and revised Tokuhashi scores revealed acceptable performance in lung cancer metastasis. The New England Spinal Metastasis Score showed acceptable performance for predicting death in prostate cancer metastasis. SORG nomogram demonstrated acceptable performance for predicting death in hematologic malignancy metastasis at all time points.

CONCLUSIONS

The results of this study demonstrated inconsistent predictive performance among the prediction models for the specific primary tumor types. The SORG nomogram revealed the highest predictive performance when compared to previous survival prediction models.

摘要

背景

许多预测总体患者生存率的评分系统都是基于临床参数和原发肿瘤类型。迄今为止,尚无共识认为哪种评分系统具有最高的预测生存率准确性,尤其是在应用于特定的原发肿瘤时。此外,这些评分系统通常未能包括影响患者生存率的现代治疗方式。本研究旨在评估这些评分系统的总体预测准确性以及基于原发肿瘤的预测准确性。

方法

回顾性分析了 2008 年 10 月至 2018 年 8 月期间接受手术治疗的年龄大于 18 岁的脊柱转移瘤患者。根据手术前的数据对患者进行评分。使用给定的评分系统为每位患者计算生存概率。在术后时间点使用接收者操作特征分析评估每个评分系统的预测能力;然后计算曲线下面积以量化预测准确性。

结果

本分析共纳入 186 例患者:101 例(54.3%)为男性,平均年龄为 57.1 岁。原发肿瘤为肺癌 37 例(20%),乳腺癌 26 例(14%),前列腺癌 20 例(10.8%),血液恶性肿瘤 18 例(9.7%),甲状腺癌 10 例(5.4%),胃肠道肿瘤 25 例(13.4%),其他肿瘤 40 例(21.5%)。10 例(5.3%)患者原发肿瘤未确定。总体生存率为 201 天。在所有肿瘤转移中,骨骼肿瘤研究组(SORG)列线图在与其他预后评分相比时表现出最高的性能,但在预测肺癌生存率方面表现较差。修订后的 Katagiri 评分在预测乳腺癌转移的死亡方面表现出可接受的性能。Tomita 和修订后的 Tokuhashi 评分在预测肺癌转移的死亡方面表现出可接受的性能。新英格兰脊柱转移评分在预测前列腺癌转移的死亡方面表现出可接受的性能。SORG 列线图在所有时间点预测血液恶性肿瘤转移的死亡方面表现出可接受的性能。

结论

本研究结果表明,特定原发肿瘤类型的预测模型之间的预测性能不一致。与以前的生存预测模型相比,SORG 列线图显示出最高的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c01/9715924/2e1e4891d595/cios-14-548-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验