Yang Guang, Zhou Siyuan, He Haoqiang, Shen Zinuo, Liu Yongmei, Hu Jun, Wang Jie
Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
School of traditional chinese medicine, Beijing University of Chinese Medicine, Beijing, China.
Front Pharmacol. 2022 Nov 29;13:1022627. doi: 10.3389/fphar.2022.1022627. eCollection 2022.
According to the theory of traditional Chinese medicine, phlegm and blood stasis (PBS) is the pathological basis for coronary heart disease (CHD). This study aimed to explore the biological basis of PBS syndrome in CHD. Using a strategy that integrated RNA-seq, DIA-based proteomics, and untargeted metabolomics on 90 clinic samples, we constructed a "gene-protein-metabolite" network for CHD-PBS syndrome. We expanded the sample size and validated the differential genes and metabolites in the network through enzyme-linked immunosorbent assay. Our findings revealed that the "gene-protein-metabolite" network of CHD-PBS syndrome included 33 mRNAs, four proteins, and 25 metabolites. JNK1, FOS, CCL2, CXCL8, PTGS2, and CSF1 were all poorly expressed in the PBS group during the sequencing stage, whereas arachidonic acid (AA) was highly expressed. During the validation stage, JNK1, AP-1, CCL2, and CXCL8 were poorly expressed, whereas PTGS2, CSF1, and AA were highly expressed. The area under the receiver operating curve was as follows: CSF1 [0.9635, 95%CI (0.9295, 0.9976)] >JNK1 [0.9361, 95% CI (0.8749, 0.9972)] >CXCL8 [0.8953, 95% CI (0.8222, 0.9684)] > CCL2 [0.8458, 95% CI (0.7676, 0.9241)] >AP-1 [0.7884, 95%CI (0.6869, 0.8899)]. The logistic regression model composed of CSF1 and JNK1 showed the greatest diagnostic value and significance for PBS syndrome. PBS syndrome is characterized by low levels of FOS, AP-1, CCL2, CXCL8, and JNK1 and elevated levels of PTGS2 and CSF1, implying that the AA metabolism is abnormal and that the JNK/AP-1 pathway is inhibited. PBS syndromes, as a subtype of CHD, may have unique molecular changes. Background. Globally, coronary heart disease (CHD) is the leading cause of death, and this would likely continue until 2030 (Mirzaei et al., 2009, 95, 740-746). According to the disease course, CHD can be classified as chronic stable CHD (or chronic coronary syndrome) and acute coronary syndrome (ACS) (Katus et al., 2017; Knuuti, 2019). Although stable CHD is not as lethal as ACS, it has a varied incidence range and patients with CHD have prolonged angina. Some symptoms of stable angina are alleviated with pharmacological therapy, but it cannot eliminate recurrent angina (Rousan et al., 2017). The clinical outcomes were not significantly improved in patients who underwent revascularization compared with those who received optimal pharmacological therapy (Shaw et al., 2008; Antman and Braunwald, 2020). A bottleneck appears to exist in CHD treatment, and traditional Chinese medicine (TCM) can act as a favorable complement. Because of its individualized treatment approach, TCM is widely practiced in eastern civilizations (Teng et al., 2016). TCM has become a principal complement in western countries (Wieland et al., 2013). Like "disease" is used in western medicine, "syndrome" is used in TCM to comprehend anomalous human conditions on the basis of patients' symptoms, tongue, and pulse (Li et al., 2012). On the basis of disease-syndrome diagnose, a TCM doctor can subclassify CHD patients into various categories, such as phlegm and blood stasis (PBS) syndrome, cold congealing and Qi stagnation syndrome, and Qi stagnation and blood stasis syndrome. PBS syndrome has recently emerged as a hot research topic in the TCM field. Objective diagnosis, expert consultations, and efficacy evaluation scales have been developed for PBS syndrome (Ren et al., 2020; Liu et al., 2021; Zheng et al., 2022). The concept of "omics" originates from the genome. It refers to the vocabulary generated by biological molecules at different levels to describe high-sequence molecular biological data resources (Dai and Shen, 2022). RNA, protein, and metabolites decipher the essence of complex etiologies, and the integration of transcriptomics, proteomics, and metabolomics are becoming a promising research mode (Pan et al., 2022). Multi-omics studies have revealed the biological characteristics of APOE transgenic mice, bronchopulmonary dysplasia, and plant tolerant to heavy metals (Singh et al., 2016; Lal et al., 2018; Mohler et al., 2020). Over the past few years, many academic achievements related to CHD-PBS syndrome have been accrued in the single-omic area. For example, Zhou identified the differential metabolites between PBS syndrome and Qi and Yin deficiency syndrome by using the urine samples of 1072 volunteers. Some of the specific metabolites of PBS syndrome are pyroglutamic acid, glutaric acid, glucose, mannitol, and xanthine (Zhou et al., 2019). Li's metabolomic study suggested that valine, leucine, isoleucine, and glycerol phospholipid metabolism could represent PBS syndrome (Zheng et al., 2022). Although some progress has been made in the understanding of PBS syndrome in CHD through the studies conducted, some issues still exist, such as a single-omics level, a lack of in-depth research, an inability to verify each other's research results, and a lack of validation of research conclusions. Overall, a systematic description of the biological foundation of PBS syndrome is lacking. Thus, the present study utilizes system biology methodologies and constructs a multi-omics network by integrating differential genes, proteins, and metabolites to systematically and comprehensively reveal the biological basis of CHD-PBS syndrome. The current study explored 1) the characteristics of the transcriptome, proteome, and metabolome for CHD-PBS syndrome; 2) the "gene-protein-metabolite" network based on differential genes (DGs), differential proteins (DPs), and differential metabolites (DMs); 3) the key biological process and metabolic pathway most related to PBS syndrome; and 4) quantitative results and the diagnostic potential of biomarkers for PSB syndrome. Materials and methods. Multi-omics sequencing, bioinformatics analysis, and clinical validation research strategy. We collected the blood samples from healthy subjects as well as CHD patients with PBS and non-phlegm and blood stasis (NPBS) syndrome to compare the differences between them by subjecting the samples to the transcriptome, proteome, and metabolomics analyses. Bioinformatics analysis identified differential molecules as well as related biological processes and pathways. Next, the "gene-protein-metabolite" network was constructed using the MetaboAnalyst database, String database, and Cytoscape software. We selected molecules with strong centrality and biological association as potential PBS syndrome biomarkers and recruited more volunteers for further validation by enzyme-linked immunosorbent assay (ELISA). Finally, the ROC curve was utilized to assess the level and diagnostic efficacy of various molecules (Figure 1).
根据中医理论,痰瘀互结是冠心病(CHD)的病理基础。本研究旨在探索冠心病痰瘀互结证型的生物学基础。通过对90例临床样本进行RNA测序、基于数据独立采集(DIA)的蛋白质组学和非靶向代谢组学分析,构建了冠心病痰瘀互结证型的“基因-蛋白质-代谢物”网络。扩大样本量,并通过酶联免疫吸附测定法验证网络中的差异基因和代谢物。研究结果显示,冠心病痰瘀互结证型的“基因-蛋白质-代谢物”网络包含33个信使核糖核酸(mRNA)、4种蛋白质和25种代谢物。在测序阶段,痰瘀互结组中的应激活化蛋白激酶1(JNK1)、原癌基因蛋白FOS、趋化因子CCL2、趋化因子CXCL8、环氧化酶2(PTGS2)和集落刺激因子1(CSF1)均低表达,而花生四烯酸(AA)高表达。在验证阶段,JNK1、活化蛋白-1(AP-1)、CCL2和CXCL8低表达,而PTGS2、CSF1和AA高表达。受试者工作特征曲线下面积如下:CSF1[0.9635,95%置信区间(CI)(0.9295,0.9976)]>JNK-I[0.9361,95%CI(0.8749,0.9972)]>CXCL8[0.8953,95%CI(0.8222,0.9684)]>CCL2[0.8458,95%CI(0.7676,0.9241)]>AP-1[0.7884,95%CI(0.6869,0.8899)]。由CSF1和JNK1组成的逻辑回归模型对痰瘀互结证型具有最大的诊断价值和意义。痰瘀互结证型的特征是FOS、AP-1、CCL2、CXCL8和JNK1水平降低,PTGS2和CSF1水平升高,这意味着花生四烯酸代谢异常,JNK/AP-1信号通路受到抑制。痰瘀互结证型作为冠心病的一种亚型,可能具有独特的分子变化。背景:在全球范围内,冠心病是主要的死亡原因,这种情况可能会持续到2030年(米尔扎伊等人于2009年发表在第95卷第740 - 746页)。根据病程,冠心病可分为慢性稳定型冠心病(或慢性冠状动脉综合征)和急性冠状动脉综合征(ACS)(卡图斯等人于《2017年》;克努蒂于《2019年》)。虽然稳定型冠心病不像急性冠状动脉综合征那样致命,但它的发病率范围很广,冠心病患者的心绞痛持续时间较长。稳定型心绞痛的一些症状可通过药物治疗得到缓解,但无法消除复发性心绞痛(鲁桑等人于2017年)。与接受最佳药物治疗的患者相比接受血运重建治疗的患者的临床结局没有显著改善(肖等人于2008年;安特曼和布劳恩瓦尔德于2020年)。冠心病治疗似乎存在一个瓶颈,而中医可以作为一种有益的补充。由于其个体化治疗方法,中医在东方文明中广泛应用(滕等人于2016年)。中医在西方国家已成为主要的补充医学(维兰德等人于2013年)。与西医中使用的“疾病”类似,中医使用“证型”来根据患者的症状、舌象和脉象来理解人体异常状况(李等人于2012年)。在疾病-证型诊断的基础上,中医医生可将冠心病患者细分为不同类别,如痰瘀互结证型、寒凝心脉证型和气滞血瘀证型。痰瘀互结证型最近已成为中医领域的一个热门研究课题。已经为痰瘀互结证型开发了客观诊断、专家咨询和疗效评估量表(任等人于2020年;刘等人于2-21年;郑等人于2022年)。“组学”的概念起源于基因组。它指的是由不同水平的生物分子产生的词汇,用于描述高序列分子生物学数据资源(戴和沈于2022年)。核糖核酸、蛋白质和代谢物解读复杂病因的本质,转录组学、蛋白质组学和代谢组学的整合正成为一种有前景的研究模式(潘等人于2022年)。多组学研究揭示了载脂蛋白E转基因小鼠、支气管肺发育不良和耐重金属植物的生物学特征(辛格等人于2016年;拉尔等人于2018年;莫勒等人于2020年)。在过去几年中,在单组学领域已经积累了许多与冠心病痰瘀互结证型相关的学术成果。例如,周通过对1072名志愿者的尿液样本进行分析,确定了痰瘀互结证型与气阴两虚证型之间的差异代谢物。痰瘀互结证型的一些特定代谢物是焦谷氨酸、戊二酸、葡萄糖、甘露醇和黄嘌呤(周等人于2019年)。李的代谢组学研究表明,缬氨酸、亮氨酸、异亮氨酸和甘油磷脂代谢可能代表痰瘀互结证型(郑等人于2022年)。尽管通过这些研究在理解冠心病痰瘀互结证型方面取得了一些进展,但仍然存在一些问题,如单组学水平、缺乏深入研究、无法相互验证研究结果以及缺乏对研究结论的验证。总体而言,缺乏对痰瘀互结证型生物学基础的系统描述。因此,本研究利用系统生物学方法,通过整合差异基因、蛋白质和代谢物构建多组学网络,以系统、全面地揭示冠心病痰瘀互结证型的生物学基础。本研究探索了:1)冠心病痰瘀互结证型的转录组、蛋白质组和代谢组特征;2)基于差异基因(DG)、差异蛋白质(DP)和差异代谢物(DM)的“基因-蛋白质-代谢物”网络;3)与痰瘀互结证型最相关的关键生物学过程和代谢途径;4)痰瘀互结证型生物标志物的定量结果和诊断潜力。材料和方法:多组学测序、生物信息学分析和临床验证研究策略。我们收集了健康受试者以及患有痰瘀互结证型和非痰瘀互结(NPBS)证型的冠心病患者的血液样本,通过对样本进行转录组学、蛋白质组学和代谢组学分析来比较它们之间的差异。生物信息学分析确定差异分子以及相关的生物学过程和途径。接下来,使用MetaboAnalyst数据库、String数据库和Cytoscape软件构建“基因-蛋白质-代谢物”网络。我们选择具有强中心性和生物学关联性的分子作为潜在的痰瘀互结证型生物标志物,并招募更多志愿者通过酶联免疫吸附测定法(ELISA)进行进一步验证。最后,利用受试者工作特征曲线评估各种分子的水平和诊断效能(图1)。