Suppr超能文献

TMS-Net:一种结合运行时质量控制方法的分割网络,用于稳健的心脏图像分割。

TMS-Net: A segmentation network coupled with a run-time quality control method for robust cardiac image segmentation.

作者信息

Uslu Fatmatülzehra, Bharath Anil A

机构信息

Bursa Technical University, Electrical and Electronics Engineering Department, Bursa, 16310, Turkey.

Imperial College London, Bioengineering Department, London, SW7 2AZ, UK.

出版信息

Comput Biol Med. 2023 Jan;152:106422. doi: 10.1016/j.compbiomed.2022.106422. Epub 2022 Dec 14.

Abstract

Recently, deep networks have shown impressive performance for the segmentation of cardiac Magnetic Resonance Imaging (MRI) images. However, their achievement is proving slow to transition to widespread use in medical clinics because of robustness issues leading to low trust of clinicians to their results. Predicting run-time quality of segmentation masks can be useful to warn clinicians against poor results. Despite its importance, there are few studies on this problem. To address this gap, we propose a quality control method based on the agreement across decoders of a multi-view network, TMS-Net, measured by the cosine similarity. The network takes three view inputs resliced from the same 3D image along different axes. Different from previous multi-view networks, TMS-Net has a single encoder and three decoders, leading to better noise robustness, segmentation performance and run-time quality estimation in our experiments on the segmentation of the left atrium on STACOM 2013 and STACOM 2018 challenge datasets. We also present a way to generate poor segmentation masks by using noisy images generated with engineered noise and Rician noise to simulate undertraining, high anisotropy and poor imaging settings problems. Our run-time quality estimation method show a good classification of poor and good quality segmentation masks with an AUC reaching to 0.97 on STACOM 2018. We believe that TMS-Net and our run-time quality estimation method has a high potential to increase the thrust of clinicians to automatic image analysis tools.

摘要

最近,深度网络在心脏磁共振成像(MRI)图像分割方面表现出了令人瞩目的性能。然而,由于存在鲁棒性问题,导致临床医生对其结果的信任度较低,其成果在医疗诊所中向广泛应用的转变过程较为缓慢。预测分割掩码的运行时质量有助于提醒临床医生注意不佳的结果。尽管这一问题很重要,但针对此问题的研究却很少。为了填补这一空白,我们提出了一种基于多视图网络TMS-Net解码器间一致性的质量控制方法,通过余弦相似度来衡量。该网络采用从同一3D图像沿不同轴重采样得到的三个视图输入。与以往的多视图网络不同,TMS-Net有一个单一编码器和三个解码器,在我们对STACOM 2013和STACOM 2018挑战数据集上的左心房分割实验中,表现出了更好的噪声鲁棒性、分割性能和运行时质量估计。我们还提出了一种方法,通过使用由工程噪声和莱斯噪声生成的噪声图像来模拟训练不足、高各向异性和不良成像设置问题,从而生成质量较差的分割掩码。我们的运行时质量估计方法在STACOM 2018上对质量差和质量好的分割掩码有良好的分类效果,AUC达到0.97。我们相信,TMS-Net和我们的运行时质量估计方法有很大潜力提高临床医生对自动图像分析工具的信任度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验