Suppr超能文献

生物力学和感觉反馈使不同的运动中枢模式发生器的行为规范化。

Biomechanical and Sensory Feedback Regularize the Behavior of Different Locomotor Central Pattern Generators.

作者信息

Deng Kaiyu, Hunt Alexander J, Szczecinski Nicholas S, Tresch Matthew C, Chiel Hillel J, Heckman C J, Quinn Roger D

机构信息

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

Department of Mechanical and Materials Engineering, Portland State University, Portland, OR 97207, USA.

出版信息

Biomimetics (Basel). 2022 Dec 4;7(4):226. doi: 10.3390/biomimetics7040226.

Abstract

This work presents an in-depth numerical investigation into a hypothesized two-layer central pattern generator (CPG) that controls mammalian walking and how different parameter choices might affect the stepping of a simulated neuromechanical model. Particular attention is paid to the functional role of features that have not received a great deal of attention in previous work: the weak cross-excitatory connectivity within the rhythm generator and the synapse strength between the two layers. Sensitivity evaluations of deafferented CPG models and the combined neuromechanical model are performed. Locomotion frequency is increased in two different ways for both models to investigate whether the model's stability can be predicted by trends in the CPG's phase response curves (PRCs). Our results show that the weak cross-excitatory connection can make the CPG more sensitive to perturbations and that increasing the synaptic strength between the two layers results in a trade-off between forced phase locking and the amount of phase delay that can exist between the two layers. Additionally, although the models exhibit these differences in behavior when disconnected from the biomechanical model, these differences seem to disappear with the full neuromechanical model and result in similar behavior despite a variety of parameter combinations. This indicates that the neural variables do not have to be fixed precisely for stable walking; the biomechanical entrainment and sensory feedback may cancel out the strengths of excitatory connectivity in the neural circuit and play a critical role in shaping locomotor behavior. Our results support the importance of including biomechanical models in the development of computational neuroscience models that control mammalian locomotion.

摘要

这项工作对一个假设的控制哺乳动物行走的两层中枢模式发生器(CPG)以及不同参数选择如何影响模拟神经力学模型的步进行了深入的数值研究。特别关注了在先前工作中未得到大量关注的特征的功能作用:节律发生器内的弱交叉兴奋性连接以及两层之间的突触强度。对去传入CPG模型和组合神经力学模型进行了敏感性评估。对于这两个模型,以两种不同方式提高运动频率,以研究是否可以通过CPG的相位响应曲线(PRC)趋势预测模型的稳定性。我们的结果表明,弱交叉兴奋性连接可使CPG对扰动更敏感,并且增加两层之间的突触强度会导致强制锁相和两层之间可能存在的相位延迟量之间的权衡。此外,尽管这些模型在与生物力学模型断开连接时表现出行为上的这些差异,但在完整的神经力学模型中这些差异似乎消失了,并且尽管有各种参数组合,仍导致相似的行为。这表明对于稳定行走,神经变量不必精确固定;生物力学夹带和感觉反馈可能会抵消神经回路中兴奋性连接的强度,并在塑造运动行为中起关键作用。我们的结果支持在控制哺乳动物运动的计算神经科学模型开发中纳入生物力学模型的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c431/9776051/671c2b3fd3f5/biomimetics-07-00226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验