Department of Psychology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
Department of Psychology, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
eNeuro. 2023 Jan 5;10(1). doi: 10.1523/ENEURO.0274-22.2022. Print 2023 Jan.
The ability to interrogate specific representations in the brain, determining how, and where, difference sources of information are instantiated can provide invaluable insight into neural functioning. Pattern component modeling (PCM) is a recent analytic technique for human neuroimaging that allows the decomposition of representational patterns in brain into contributing subcomponents. In the current study, we present a novel PCM variant that tracks the contribution of prespecified representational patterns to brain representation across areas, thus allowing hypothesis-guided employment of the technique. We apply this technique to investigate the contributions of hedonic and nonhedonic information to the neural representation of tactile experience. We applied aversive pressure (AP) and appetitive brush (AB) to stimulate distinct peripheral nerve pathways for tactile information (C-/CT-fibers, respectively) while patients underwent functional magnetic resonance imaging (fMRI) scanning. We performed representational similarity analyses (RSAs) with pattern component modeling to dissociate how discriminatory versus hedonic tactile information contributes to population code representations in the human brain. Results demonstrated that information about appetitive and aversive tactile sensation is represented separately from nonhedonic tactile information across cortical structures. This also demonstrates the potential of new hypothesis-guided PCM variants to help delineate how information is instantiated in the brain.
大脑中特定的代表区域的研究能力可以提供宝贵的见解。模式成分建模(PCM)是一种用于人类神经影像学的新分析技术,允许将大脑中的代表模式分解为贡献的子成分。在当前的研究中,我们提出了一种新的 PCM 变体,该变体可以跟踪特定代表模式对大脑代表的贡献,从而允许对该技术进行假设引导的使用。我们应用该技术来研究享乐和非享乐信息对触觉体验的神经代表的贡献。我们施加了厌恶压力(AP)和喜好刷子(AB),以分别刺激触觉信息的不同周围神经通路(分别为 C-/CT-纤维),同时让患者接受功能磁共振成像(fMRI)扫描。我们进行了代表相似性分析(RSAs),采用模式成分建模来区分区分性和享乐性触觉信息如何有助于人类大脑中的群体编码代表。结果表明,关于愉快和厌恶触觉的信息与非享乐性触觉信息分别在皮质结构中得到代表。这也证明了新的假设引导的 PCM 变体可以帮助确定信息在大脑中的实例化方式。