Acoustics Research Centre, University of Salford, Manchester M5 4WT, UK.
ETSI Sistemas de Telecomunicación, Departamento de Ingeniería Audiovisual y Comunicaciones, Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, 28031 Madrid, Spain.
Sensors (Basel). 2022 Dec 10;22(24):9686. doi: 10.3390/s22249686.
The surface condition of roadways has direct consequences on a wide range of processes related to the transportation technology, quality of road facilities, road safety, and traffic noise emissions. Methods developed for detection of road surface condition are crucial for maintenance and rehabilitation plans, also relevant for driving environment detection for autonomous transportation systems and e-mobility solutions. In this paper, the clustering of the tire-road noise emission features is proposed to detect the condition of the wheel tracks regions during naturalistic driving events. This acoustic-based methodology was applied in urban areas under nonstop real-life traffic conditions. Using the proposed method, it was possible to identify at least two groups of surface status on the inspected routes over the wheel-path interaction zone. The detection rate on urban zone reaches 75% for renewed lanes and 72% for distressed lanes.
路面状况直接影响到与交通技术、道路设施质量、道路安全和交通噪声排放等广泛过程相关的一系列问题。为检测路面状况而开发的方法对于维护和修复计划至关重要,对于自动驾驶系统和电动汽车解决方案的驾驶环境检测也同样重要。在本文中,提出了轮胎-道路噪声发射特征的聚类,以检测自然驾驶事件过程中车轮轨迹区域的状况。该声学方法应用于非停止的现实交通条件下的城市地区。使用所提出的方法,有可能在车轮路径交互区域上识别出至少两个表面状态组。在城市区域的检测率,翻新车道为 75%,损坏车道为 72%。