Am J Epidemiol. 2023 Apr 6;192(4):644-657. doi: 10.1093/aje/kwac220.
Distributed lag models (DLMs) are often used to estimate lagged associations and identify critical exposure windows. In a simulation study of prenatal nitrogen dioxide (NO2) exposure and birth weight, we demonstrate that bias amplification and variance inflation can manifest under certain combinations of DLM estimation approaches and time-trend adjustment methods when using low-spatial-resolution exposures with extended lags. Our simulations showed that when using high-spatial-resolution exposure data, any time-trend adjustment method produced low bias and nominal coverage for the distributed lag estimator. When using either low- or no-spatial-resolution exposures, bias due to time trends was amplified for all adjustment methods. Variance inflation was higher in low- or no-spatial-resolution DLMs when using a long-term spline to adjust for seasonality and long-term trends due to concurvity between a distributed lag function and secular function of time. NO2-birth weight analyses in a Massachusetts-based cohort showed that associations were negative for exposures experienced in gestational weeks 15-30 when using high-spatial-resolution DLMs; however, associations were null and positive for DLMs with low- and no-spatial-resolution exposures, respectively, which is likely due to bias amplification. DLM analyses should jointly consider the spatial resolution of exposure data and the parameterizations of the time trend adjustment and lag constraints.
分布滞后模型 (DLM) 常用于估计滞后关联并确定关键暴露窗口。在一项关于产前二氧化氮 (NO2) 暴露与出生体重的模拟研究中,我们证明了当使用具有扩展滞后的低空间分辨率暴露数据时,DLM 估计方法和时间趋势调整方法的某些组合下会出现偏差放大和方差膨胀。我们的模拟表明,当使用高空间分辨率的暴露数据时,任何时间趋势调整方法都可以为分布式滞后估计器提供低偏差和名义覆盖。当使用低空间分辨率或无空间分辨率的暴露数据时,所有调整方法都会放大由于时间趋势导致的偏差。由于分布式滞后函数和时间的长期函数之间的曲率,当使用长期样条函数来调整季节性和长期趋势时,低空间分辨率或无空间分辨率的 DLM 中的方差膨胀更高。在马萨诸塞州的一个队列中进行的 NO2-出生体重分析表明,当使用高空间分辨率的 DLM 时,在妊娠 15-30 周期间经历的暴露与负面关联;然而,对于低空间分辨率和无空间分辨率的 DLM,关联为零和正,这可能是由于偏差放大。DLM 分析应综合考虑暴露数据的空间分辨率以及时间趋势调整和滞后约束的参数化。