Suppr超能文献

利用 AlphaFold 对蛋白质模型精度进行的最新评估。

State-of-the-Art Estimation of Protein Model Accuracy Using AlphaFold.

机构信息

Harvard University, Cambridge, Massachusetts 02138, USA.

John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Phys Rev Lett. 2022 Dec 2;129(23):238101. doi: 10.1103/PhysRevLett.129.238101.

Abstract

The problem of predicting a protein's 3D structure from its primary amino acid sequence is a longstanding challenge in structural biology. Recently, approaches like alphafold have achieved remarkable performance on this task by combining deep learning techniques with coevolutionary data from multiple sequence alignments of related protein sequences. The use of coevolutionary information is critical to these models' accuracy, and without it their predictive performance drops considerably. In living cells, however, the 3D structure of a protein is fully determined by its primary sequence and the biophysical laws that cause it to fold into a low-energy configuration. Thus, it should be possible to predict a protein's structure from only its primary sequence by learning an approximate biophysical energy function. We provide evidence that alphafold has learned such an energy function, and uses coevolution data to solve the global search problem of finding a low-energy conformation. We demonstrate that alphafold'slearned energy function can be used to rank the quality of candidate protein structures with state-of-the-art accuracy, without using any coevolution data. Finally, we explore several applications of this energy function, including the prediction of protein structures without multiple sequence alignments.

摘要

从蛋白质的一级氨基酸序列预测其 3D 结构是结构生物学中的一个长期存在的挑战。最近,像 AlphaFold 这样的方法通过将深度学习技术与相关蛋白质序列的多重序列比对的共进化数据相结合,在这项任务上取得了显著的性能。共进化信息对这些模型的准确性至关重要,如果没有它,它们的预测性能会大幅下降。然而,在活细胞中,蛋白质的 3D 结构完全由其一级序列和导致其折叠成低能构象的生物物理定律决定。因此,通过学习近似的生物物理能量函数,应该有可能仅从蛋白质的一级序列预测其结构。我们提供的证据表明,AlphaFold 已经学习了这样的能量函数,并利用共进化数据来解决寻找低能构象的全局搜索问题。我们证明,AlphaFold 学习的能量函数可以用于以最先进的准确性对候选蛋白质结构的质量进行排序,而无需使用任何共进化数据。最后,我们探索了这个能量函数的几个应用,包括在没有多重序列比对的情况下预测蛋白质结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验