Suppr超能文献

层状硅酸盐矿物酸化过程中表面羟基在铝活化中的重要作用。

The important role of surface hydroxyl groups in aluminum activation during phyllosilicate mineral acidification.

作者信息

Li Ke-Wei, Lu Hai-Long, Nkoh Jackson Nkoh, Xu Ren-Kou

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.

出版信息

Chemosphere. 2023 Feb;313:137570. doi: 10.1016/j.chemosphere.2022.137570. Epub 2022 Dec 20.

Abstract

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.

摘要

层状硅酸盐矿物是土壤中的重要组成部分,也是土壤酸化过程中活性铝(Al)的重要来源。然而,层状硅酸盐矿物中铝活化的机制尚未得到很好的理解。本文研究了用无机和有机材料对矿物进行改性后,层状硅酸盐矿物表面羟基在酸化过程中对铝活化的影响。用富里酸(FA-)、氧化铁(Fe-)、铁与富里酸结合物(Fe-FA-)和硅氧烷(Si-O-)对高岭石、蒙脱石和伊利石进行改性后,层间间距发生了变化。例如,用铁改性时,铁进入高岭石和蒙脱石的层间空间,改变了这两种矿物的层间间距,但对伊利石没有影响。此外,其他改性方法对蒙脱石的层间间距有显著影响,但对高岭石和伊利石没有影响。观察到所有改性策略都通过减少矿物表面的羟基数量并抑制H与羟基之间的质子化反应来抑制酸化过程中的铝活化。然而,抑制效果因层状硅酸盐矿物类型而异。对于高岭石(Kao),不同改性方法在酸化过程中对铝活化的抑制效果顺序为:Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao。此外,对于蒙脱石(Mon),抑制效果顺序为:Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon,而对于伊利石,顺序为:Fe-伊利石 > Si-O-伊利石 ≈ Fe-FA-伊利石 > FA-伊利石。因此,层状硅酸盐矿物表面和边缘的羟基在从矿物结构中活化铝方面起着重要作用。此外,羟基的质子化可能是这些矿物中铝活化的第一步。本研究结果可为开发抑制土壤酸化和铝活化的新技术提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验