Suppr超能文献

控制表面润湿性可增强晶态金属的纳米级蠕变流动观察。

Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability.

机构信息

Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, 430072, Wuhan, Hubei, China.

State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, 430072, Wuhan, Hubei, China.

出版信息

Nat Commun. 2022 Dec 26;13(1):7943. doi: 10.1038/s41467-022-35703-6.

Abstract

Understanding and controlling interface friction are central to many science and engineering applications. However, frictional sliding is closely related to adhesion, surface roughness, surface chemistry, mechanical deformation of contact solids, which poses the major challenge to experimental studying and theoretical modeling of friction. Here, by exploiting the recent developed thermomechanical nanomolding technique, we present a simple strategy to decouple the interplay between surface chemistry, plastic deformation, and interface friction by monitoring the nanoscale creep flow of metals in nanochannels. We show that superhydrophobic nanochannels outperforming hydrophilic nanochannels can be up to orders of magnitude in terms of creep flow rate. The comparative experimental study on pressure and temperature dependent nanomolding efficiency uncovers that the enhanced creep flow rate originates from diffusion-based deformation mechanism as well as the superhydrophobic surface induced boundary slip. Moreover, our results reveal that there exists a temperature-dependent critical pressure below which the traditional lubrication methods to reduce friction will break down. Our findings not only provide insights into the understanding of mechanical deformation and nanotribology, but also show a general and practical technique for studying the fundamental processes of frictional motion. Finally, we anticipate that the increased molding efficiency could facilitate the application of nanoimprinting/nanomolding.

摘要

理解和控制界面摩擦是许多科学和工程应用的核心。然而,摩擦滑动与粘附、表面粗糙度、表面化学、接触固体的机械变形密切相关,这给摩擦的实验研究和理论建模带来了重大挑战。在这里,我们利用最近开发的热机械纳米成型技术,提出了一种简单的策略,通过监测金属在纳米通道中的纳米级蠕变流动来分离表面化学、塑性变形和界面摩擦之间的相互作用。我们表明,超疏水纳米通道在蠕变流动速率方面比亲水纳米通道高出几个数量级。对压力和温度相关纳米成型效率的比较实验研究表明,增强的蠕变流动速率源自基于扩散的变形机制以及超疏水表面诱导的边界滑移。此外,我们的结果表明,存在一个依赖于温度的临界压力,低于该压力,传统的减少摩擦的润滑方法将失效。我们的发现不仅提供了对机械变形和纳摩擦学的理解,而且展示了一种用于研究摩擦运动基本过程的通用实用技术。最后,我们预计增加的成型效率将有助于纳米压印/纳米成型的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ec/9792587/296d8e16a14b/41467_2022_35703_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验