Suppr超能文献

从蛋白质膜电化学到纳米受限酶级联反应和电化学叶。

From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf.

机构信息

Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.

Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.

出版信息

Chem Rev. 2023 May 10;123(9):5421-5458. doi: 10.1021/acs.chemrev.2c00397. Epub 2022 Dec 27.

Abstract

Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.

摘要

蛋白质膜电化学(PFE)为研究氧化还原蛋白和许多电子转移酶的性质提供了无与伦比的洞察力,使原本难以确定或难以处理的问题,如不稳定的 Fe-S 中心和酶的催化偏向性等,得以研究。许多酶在连接到电极时被证明是可逆的电催化剂,进一步的研究揭示了催化速率对电极电位的依赖关系如何与电子学具有惊人的相似之处。一个特殊情况是,在高浓度下负载在导电金属氧化物层的 3D 纳米孔中的光合作用酶,铁氧还蛋白-NADP 还原酶(FNR)的可逆电化学,正在导致一种新技术的出现,该技术将 PFE 应用于其他类别的无数种酶,这些酶的活性通过主电子交换来控制。这种扩展是可能的,因为 FNR 介导的 NADP(H)循环可以与脱氢酶偶联,然后通过在材料纳米孔内紧密通道化辅助因子和中间产物,与串联的其他酶偶联。因此,早期对催化波型的解释和与电子学的各种类比被扩展,以启动一个可能恰当地命名为“级联电子学”的领域,其中通过电化学分析仪监测和控制酶级联反应的流动。与 FNR 通过 NADPH 的单向循环来传递电子和氢化物转移的光合作用不同,“电化学叶”(e-Leaf)可以用于驱动氧化和还原方向的反应。e-Leaf 提供了一种研究酶如何受纳米约束和拥挤影响的自然方式,模拟了酶级联在活细胞中运行的物理条件。被困酶的反应,通常在非常高的局部浓度下,因此通过电化学进行研究,利用电势域来控制速率和方向,并利用电流速率类比来推导动力学数据。局部 NADP(H)循环非常高效,导致辅酶周转率非常高,并为控制和利用生物催化提供了新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de2e/10176485/7fe0f9709a1c/cr2c00397_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验