Suppr超能文献

基于两级融合的建筑垃圾分类新方法。

A new method of construction waste classification based on two-level fusion.

机构信息

College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China.

Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China.

出版信息

PLoS One. 2022 Dec 27;17(12):e0279472. doi: 10.1371/journal.pone.0279472. eCollection 2022.

Abstract

The automatic sorting of construction waste (CW) is an essential procedure in the field of CW recycling due to its remarkable efficiency and safety. The classification of CW is the primary task that guides automatic and precise sorting. In our work, a new method of CW classification based on two-level fusion is proposed to promote classification performance. First, statistical histograms are used to obtain global hue information and local oriented gradients, which are called the hue histogram (HH) and histogram of oriented gradients (HOG), respectively. To fuse these visual features, a bag-of-visual-words (BoVW) method is applied to code HOG descriptors in a CW image as a vector, and this process is named B-HOG. Then, based on feature-level fusion, we define a new feature to combine HH and B-HOG, which represent the global and local visual characteristics of an object in a CW image. Furthermore, two base classifiers are used to learn the information from the color feature space and the new feature space. Based on decision-level fusion, we propose a joint decision-making model to combine the decisions from the two base classifiers for the final classification result. Finally, to verify the performance of the proposed method, we collect five types of CW images as the experimental data set and use these images to conduct experiments on three different base classifiers. Moreover, we compare this method with other extant methods. The results demonstrate that our method is effective and feasible.

摘要

建筑废料 (CW) 的自动分拣在 CW 回收领域是一个必不可少的程序,因为它具有显著的效率和安全性。CW 的分类是指导自动和精确分拣的首要任务。在我们的工作中,提出了一种基于两级融合的 CW 分类新方法,以提高分类性能。首先,使用统计直方图获取全局色调信息和局部方向梯度,分别称为色调直方图 (HH) 和方向梯度直方图 (HOG)。为了融合这些视觉特征,应用视觉词袋 (BoVW) 方法将 HOG 描述符编码为 CW 图像中的向量,该过程称为 B-HOG。然后,基于特征级融合,我们定义了一个新的特征来组合 HH 和 B-HOG,它们分别表示 CW 图像中对象的全局和局部视觉特征。此外,使用两个基础分类器学习颜色特征空间和新特征空间中的信息。基于决策级融合,我们提出了一个联合决策模型,用于结合两个基础分类器的决策,得出最终的分类结果。最后,为了验证所提出方法的性能,我们收集了五类 CW 图像作为实验数据集,并使用这些图像在三个不同的基础分类器上进行实验。此外,我们将该方法与其他现有的方法进行了比较。结果表明,我们的方法是有效和可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ee7/9794073/18cbb6569a83/pone.0279472.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验