Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2207680120. doi: 10.1073/pnas.2207680120. Epub 2022 Dec 28.
Engineering microbes for the production of valuable natural products is often hindered by the regulation of native competing metabolic networks in host. This is particularly evident in the case of terpenoid synthesis in yeast, where the canonical terpenoid precursors are tightly coupled to the biosynthesis of sterols essential for yeast viability. One way to circumvent this limitation is by engineering product pathways less connected to the host native metabolism. Here, we introduce a two-step isopentenol utilization pathway (IUP) in to augment the native mevalonate pathway by providing a shortcut to the synthesis of the common terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). As such, the IUP was capable of elevating the IPP/DMAPP pool by 147-fold compared with the native pathway. We further demonstrate that cofeeding isoprenol and prenol enhances geranyl diphosphate (GPP) content for monoterpene biosynthesis. More importantly, we established a synthetic three-step route for efficient synthesis of di-and tetraterpene precursor geranylgeranyl diphosphate (GGPP), circumventing the competition with farnesyl diphosphate (FPP) for sterol biosynthesis and elevating the GGPP level by 374-fold. We combine these IUP-supported precursor-forming platforms with downstream terpene synthases to harness their potential and improve the production of industrially relevant terpenoids by several fold. Our exploration provides a universal and effective platform for supporting terpenoid synthesis in yeast.
工程微生物生产有价值的天然产物常常受到宿主中天然竞争代谢网络的调节的阻碍。这在酵母萜类合成中尤为明显,其中典型的萜类前体与酵母生存所必需的固醇生物合成紧密偶联。规避这一限制的一种方法是构建与宿主天然代谢联系较少的产物途径。在这里,我们在 中引入了两步异戊烯醇利用途径(IUP),通过为常见萜类前体异戊烯二磷酸(IPP)和二甲基烯丙基二磷酸(DMAPP)的合成提供捷径,来补充天然甲羟戊酸途径。因此,与天然途径相比,IUP 能够将 IPP/DMAPP 池提高 147 倍。我们进一步证明,共喂养异戊烯醇和烯丙醇可提高单萜生物合成的香叶基二磷酸(GPP)含量。更重要的是,我们建立了一种高效合成二萜和四萜前体香叶基香叶基二磷酸(GGPP)的合成三步骤途径,绕过了与法呢基二磷酸(FPP)竞争用于固醇生物合成,并将 GGPP 水平提高了 374 倍。我们将这些 IUP 支持的前体形成平台与下游萜烯合酶结合使用,以挖掘它们的潜力,并将几种工业相关萜类化合物的产量提高数倍。我们的探索为支持酵母中的萜类合成提供了一个通用有效的平台。