Zhang Jiafeng, Xu Ke, Jiang Jun, Fan Qin, Ding Xiaobei, Zhong Ping, Xing Hui, Chai Chengliang, Pan Xiaohong
Department of HIV/AIDS Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
Department of HIV/AIDS Control and Prevention, Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, China.
Int J Infect Dis. 2023 Mar;128:187-193. doi: 10.1016/j.ijid.2022.12.033. Epub 2022 Dec 30.
This study aimed to establish a collaborative approach to quantify local HIV transmission, which is an issue of great concern to public health.
We linked HIV-1 pol gene sequences to demographic information and epidemiological investigations in Hangzhou (a central city in East China). We estimated local acquisition rates from a collaboration of molecular network analysis (with a distance-based approach) and epidemiological investigations.
Among 1064 newly diagnosed patients with HIV, 857 pol sequences were acquired and subsequently analyzed. Multiple subtypes were identified, with circulating recombinant form (CRF)07_BC (42.5%) and CRF01_AE (39.2%) predominating, followed by 13 other subtypes and 26 unique recombinant forms. By integrating the molecular network analysis and epidemiological investigations, we estimated that the proportion of local infection was 63.2%. The multivariable analyses revealed that individuals in clusters were more likely to be local residents, be aged 50 years or older, work as farmers, and have a higher first cluster of differentiation 4 count level (P <0.05). The proportions of local acquisitions over 70% were observed in local residents (79.9%, 242/303), individuals aged 50 years or older (73.6%, 181/246), and farmers (75.6%, 99/131).
The molecular network analysis can augment traditional HIV epidemic surveillance. This study establishes a paradigm for quantifying local HIV transmission for generalization in other areas.
本研究旨在建立一种协作方法来量化当地的艾滋病毒传播情况,这是一个备受公共卫生关注的问题。
我们将HIV-1 pol基因序列与杭州(中国东部的一个中心城市)的人口统计学信息和流行病学调查相关联。我们通过分子网络分析(基于距离的方法)与流行病学调查的协作来估计当地感染率。
在1064例新诊断的艾滋病毒患者中,获取了857个pol序列并随后进行了分析。鉴定出多种亚型,其中流行重组型(CRF)07_BC(42.5%)和CRF01_AE(39.2%)占主导,其次是其他13种亚型和26种独特的重组形式。通过整合分子网络分析和流行病学调查,我们估计当地感染的比例为63.2%。多变量分析显示,聚类中的个体更有可能是当地居民、年龄在50岁及以上、从事农民工作且具有较高的分化抗原4计数水平(P<0.05)。在当地居民(79.9%,242/303)、年龄在50岁及以上的个体(73.6%,181/246)和农民(75.6%,99/131)中观察到当地感染比例超过70%。
分子网络分析可以增强传统的艾滋病毒疫情监测。本研究建立了一种量化当地艾滋病毒传播的范式,以供其他地区推广。