Suppr超能文献

基于机器学习的冠状动脉血运重建术高血压患者 1 年死亡率预测。

Machine learning-based prediction of 1-year mortality in hypertensive patients undergoing coronary revascularization surgery.

机构信息

Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Clin Cardiol. 2023 Mar;46(3):269-278. doi: 10.1002/clc.23963. Epub 2023 Jan 1.

Abstract

BACKGROUND

Machine learning (ML) has shown promising results in all fields of medicine, including preventive cardiology. Hypertensive patients are at higher risk of mortality after coronary artery bypass graft (CABG) surgery; thus, we aimed to design and evaluate five ML models to predict 1-year mortality among hypertensive patients who underwent CABG.

HYOTHESIS

ML algorithms can significantly improve mortality prediction after CABG.

METHODS

Tehran Heart Center's CABG data registry was used to extract several baseline and peri-procedural characteristics and mortality data. The best features were chosen using random forest (RF) feature selection algorithm. Five ML models were developed to predict 1-year mortality: logistic regression (LR), RF, artificial neural network (ANN), extreme gradient boosting (XGB), and naïve Bayes (NB). The area under the curve (AUC), sensitivity, and specificity were used to evaluate the models.

RESULTS

Among the 8,493 hypertensive patients who underwent CABG (mean age of 68.27 ± 9.27 years), 303 died in the first year. Eleven features were selected as the best predictors, among which total ventilation hours and ejection fraction were the leading ones. LR showed the best prediction ability with an AUC of 0.82, while the least AUC was for the NB model (0.79). Among the subgroups, the highest AUC for LR model was for two age range groups (50-59 and 80-89 years), overweight, diabetic, and smoker subgroups of hypertensive patients.

CONCLUSIONS

All ML models had excellent performance in predicting 1-year mortality among CABG hypertension patients, while LR was the best regarding AUC. These models can help clinicians assess the risk of mortality in specific subgroups at higher risk (such as hypertensive ones).

摘要

背景

机器学习(ML)在医学的各个领域都显示出了有前景的结果,包括预防心脏病学。高血压患者在冠状动脉旁路移植(CABG)手术后的死亡率更高;因此,我们旨在设计和评估五个 ML 模型来预测接受 CABG 的高血压患者的 1 年死亡率。

假说

ML 算法可以显著提高 CABG 后死亡率的预测。

方法

使用德黑兰心脏中心的 CABG 数据登记处提取了一些基线和围手术期特征以及死亡率数据。使用随机森林(RF)特征选择算法选择最佳特征。开发了五个 ML 模型来预测 1 年死亡率:逻辑回归(LR)、RF、人工神经网络(ANN)、极端梯度增强(XGB)和朴素贝叶斯(NB)。使用曲线下面积(AUC)、敏感性和特异性来评估模型。

结果

在 8493 名接受 CABG 的高血压患者(平均年龄 68.27±9.27 岁)中,303 人在第一年死亡。11 个特征被选为最佳预测因子,其中总通气时间和射血分数是主要的。LR 表现出最佳的预测能力,AUC 为 0.82,而 NB 模型的 AUC 最低(0.79)。在亚组中,LR 模型在两个年龄组(50-59 和 80-89 岁)、超重、糖尿病和高血压患者的吸烟者亚组中具有最高的 AUC。

结论

所有 ML 模型在预测 CABG 高血压患者 1 年死亡率方面均具有出色的性能,而 LR 模型在 AUC 方面表现最佳。这些模型可以帮助临床医生评估特定高风险亚组(如高血压患者)的死亡率风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb7/10018097/63eddf4db65d/CLC-46-269-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验