Durdevic Ljiljana, Relaño Ginés Aroa, Roueff Antoine, Blivet Guillaume, Baffou Guillaume
Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Marseille, Marseille, France.
REGEnLIFE, Montpellier, France.
Biomed Opt Express. 2022 Nov 17;13(12):6550-6560. doi: 10.1364/BOE.471284. eCollection 2022 Dec 1.
Quantitative phase microscopies (QPMs) enable label-free, non-invasive observation of living cells in culture, for arbitrarily long periods of time. One of the main benefits of QPMs compared with fluorescence microscopy is the possibility to measure the dry mass of individual cells or organelles. While QPM dry mass measurements on neural cells have been reported this last decade, dry mass measurements on their neurites has been very little addressed. Because neurites are tenuous objects, they are difficult to precisely characterize and segment using most QPMs. In this article, we use cross-grating wavefront microscopy (CGM), a high-resolution wavefront imaging technique, to measure the dry mass of individual neurites of primary neurons . CGM is based on the simple association of a cross-grating positioned in front of a camera, and can detect wavefront distortions smaller than a hydrogen atom (∼0.1 nm). In this article, an algorithm for dry-mass measurement of neurites from CGM images is detailed and provided. With objects as small as neurites, we highlight the importance of dealing with the diffraction rings for proper image segmentation and accurate biomass measurements. The high precision of the measurements we obtain using CGM and this semi-manual algorithm enabled us to detect periodic oscillations of neurites never observed before, demonstrating the sufficient degree of accuracy of CGM to capture the cell dynamics at the single neurite level, with a typical precision of 2%, i.e., 0.08 pg in most cases, down to a few fg for the smallest objects.
定量相显微镜技术(QPMs)能够对培养中的活细胞进行无标记、非侵入性的长时间观察。与荧光显微镜相比,QPMs的主要优势之一是能够测量单个细胞或细胞器的干质量。尽管在过去十年中已有关于神经细胞的QPM干质量测量的报道,但对其神经突的干质量测量却很少涉及。由于神经突很纤细,使用大多数QPMs很难对其进行精确表征和分割。在本文中,我们使用交叉光栅波前显微镜(CGM),一种高分辨率波前成像技术,来测量原代神经元单个神经突的干质量。CGM基于置于相机前的交叉光栅的简单组合,能够检测小于氢原子(约0.1纳米)的波前畸变。本文详细介绍并提供了一种从CGM图像测量神经突干质量的算法。对于像神经突这样小的物体,我们强调了处理衍射环对于正确图像分割和精确生物量测量的重要性。我们使用CGM和这种半自动算法获得的测量高精度使我们能够检测到以前从未观察到的神经突的周期性振荡,这表明CGM具有足够的精度来捕捉单个神经突水平的细胞动态,典型精度为2%,即在大多数情况下为0.08皮克,对于最小的物体可达几飞克。