Ju Jie, Liu Ke'nan, Liu Fang'ai
School of Information Science and Engineering, Shandong Normal University, Jinan, 250358 China.
Huawei Technologies Co., Ltd., Shenzhen, China.
Neural Process Lett. 2022 Dec 24:1-19. doi: 10.1007/s11063-022-11119-7.
Sulphur dioxide is one of the most common air pollutants, forming acid rain and other harmful substances in the atmosphere, which can further damage our ecosystem and cause respiratory diseases in humans. Therefore, it is essential to monitor the concentration of sulphur dioxide produced in industrial processes in real-time to predict the concentration of sulphur dioxide emissions in the next few hours or days and to control them in advance. To address this problem, we propose an AR-LSTM analytical forecasting model based on ARIMA and LSTM. Based on the sensor's time series data set, we preprocess the data set and then carry out the modeling and analysis work. We analyze and predict the proposed analysis and prediction model in two data sets and conduct comparative experiments with other comparison models based on the three evaluation indicators of R, RMSE and MAE. The results demonstrated the effectiveness of the AR-LSTM analytical prediction model; Finally, a forecasting exercise was carried out for emissions in the coming weeks using our proposed AR-LSTM analytical forecasting model.
二氧化硫是最常见的空气污染物之一,它在大气中形成酸雨和其他有害物质,会进一步破坏我们的生态系统并导致人类呼吸系统疾病。因此,实时监测工业过程中产生的二氧化硫浓度,以预测未来几小时或几天内二氧化硫的排放浓度并提前加以控制至关重要。为解决这一问题,我们提出了一种基于自回归积分滑动平均模型(ARIMA)和长短期记忆网络(LSTM)的AR-LSTM分析预测模型。基于传感器的时间序列数据集,我们对数据集进行预处理,然后开展建模与分析工作。我们在两个数据集中对所提出的分析预测模型进行分析和预测,并基于R、均方根误差(RMSE)和平均绝对误差(MAE)这三个评估指标与其他比较模型进行对比实验。结果证明了AR-LSTM分析预测模型的有效性;最后,使用我们提出的AR-LSTM分析预测模型对未来几周的排放进行了预测演练。