Suppr超能文献

迈向自闭症谱系障碍诊断测试的发展:大数据与代谢组学的结合。

Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics.

作者信息

Qureshi Fatir, Hahn Juergen

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy NY 12180.

Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy NY 12180.

出版信息

Can J Chem Eng. 2023 Jan;101(1):9-17. doi: 10.1002/cjce.24594. Epub 2022 Aug 10.

Abstract

Autism spectrum disorder (ASD) is defined as a neurodevelopmental disorder which results in impairments in social communications and interactions as well as repetitive behaviors. Despite current estimates showing that approximately 2.2% of children are affected in the United States, relatively little about ASD pathophysiology is known in part due to the highly heterogenous presentation of the disorder. Given the limited knowledge into the biological mechanisms governing its etiology, the diagnosis of ASD is performed exclusively based on an individual's behavior assessed by a clinician through psychometric tools. Although there is no readily available biochemical test for ASD diagnosis, multivariate statistical methods show considerable potential for effectively leveraging multiple biochemical measurements for classification and characterization purposes. In this work, markers associated with the folate dependent one-carbon metabolism and transulfuration (FOCM/TS) pathways analyzed via both Fisher Discriminant Analysis and Support Vector Machine showed strong capability to distinguish between ASD and TD cohorts. Furthermore, using Kernel Partial Least Squares regression it was possible to assess some degree of behavioral severity from metabolomic data. While the results presented need to be replicated in independent future studies, they represent a promising avenue for uncovering clinically relevant ASD biomarkers.

摘要

自闭症谱系障碍(ASD)被定义为一种神经发育障碍,它会导致社交沟通和互动以及重复行为出现障碍。尽管目前的估计显示,在美国约有2.2%的儿童受到影响,但由于该疾病的表现高度异质性,关于ASD病理生理学的了解相对较少。鉴于对其病因的生物学机制了解有限,ASD的诊断完全基于临床医生通过心理测量工具评估的个体行为。虽然目前尚无现成的生化检测方法用于ASD诊断,但多变量统计方法在有效利用多种生化测量进行分类和特征描述方面显示出巨大潜力。在这项研究中,通过Fisher判别分析和支持向量机分析的与叶酸依赖性一碳代谢和转硫途径(FOCM/TS)相关的标志物显示出强大的区分ASD和TD队列的能力。此外,使用核偏最小二乘回归可以从代谢组学数据评估一定程度的行为严重程度。虽然目前呈现的结果需要在未来的独立研究中进行重复验证,但它们为发现临床相关的ASD生物标志物提供了一条有前景的途径。

相似文献

1
Towards the Development of a Diagnostic Test for Autism Spectrum Disorder: Big Data Meets Metabolomics.
Can J Chem Eng. 2023 Jan;101(1):9-17. doi: 10.1002/cjce.24594. Epub 2022 Aug 10.
5
High efficiency classification of children with autism spectrum disorder.
PLoS One. 2018 Feb 15;13(2):e0192867. doi: 10.1371/journal.pone.0192867. eCollection 2018.
6
Urine Organic Acids as Potential Biomarkers for Autism-Spectrum Disorder in Chinese Children.
Front Cell Neurosci. 2019 Apr 30;13:150. doi: 10.3389/fncel.2019.00150. eCollection 2019.
9
Urinary Markers of Oxidative Stress in Children with Autism Spectrum Disorder (ASD).
Antioxidants (Basel). 2019 Jun 20;8(6):187. doi: 10.3390/antiox8060187.
10

引用本文的文献

1
Framework for Testing Robustness of Machine Learning-Based Classifiers.
J Pers Med. 2022 Aug 14;12(8):1314. doi: 10.3390/jpm12081314.

本文引用的文献

2
Analysis of Global and Local DNA Methylation Patterns in Blood Samples of Patients With Autism Spectrum Disorder.
Front Pediatr. 2021 Oct 5;9:685310. doi: 10.3389/fped.2021.685310. eCollection 2021.
3
Blood biomarker discovery for autism spectrum disorder: A proteomic analysis.
PLoS One. 2021 Feb 24;16(2):e0246581. doi: 10.1371/journal.pone.0246581. eCollection 2021.
4
Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder.
Biol Psychiatry. 2021 Mar 1;89(5):451-462. doi: 10.1016/j.biopsych.2020.09.025. Epub 2020 Oct 10.
5
Altered metabolism of mothers of young children with Autism Spectrum Disorder: a case control study.
BMC Pediatr. 2020 Dec 14;20(1):557. doi: 10.1186/s12887-020-02437-7.
6
The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity.
Metabolites. 2020 Nov 23;10(11):476. doi: 10.3390/metabo10110476.
8
Early Detection and Diagnosis of Autism Spectrum Disorder: Why Is It So Difficult?
Semin Pediatr Neurol. 2020 Oct;35:100831. doi: 10.1016/j.spen.2020.100831. Epub 2020 Jun 24.
9
Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements.
Semin Pediatr Neurol. 2020 Jul;34:100803. doi: 10.1016/j.spen.2020.100803. Epub 2020 Mar 5.
10
Urinary Essential Elements of Young Children with Autism Spectrum Disorder and their Mothers.
Res Autism Spectr Disord. 2020 Apr;72. doi: 10.1016/j.rasd.2020.101518. Epub 2020 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验