Suppr超能文献

用于药物-靶点相互作用预测的元路径聚合异构图神经网络

Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction.

作者信息

Li Mei, Cai Xiangrui, Xu Sihan, Ji Hua

机构信息

Tianjin Key Laboratory of Network and Data Security Technology, China.

College of Computer Science, Nankai University, 300350, Tianjin, China.

出版信息

Brief Bioinform. 2023 Jan 19;24(1). doi: 10.1093/bib/bbac578.

Abstract

Drug-target interaction (DTI) prediction is an essential step in drug repositioning. A few graph neural network (GNN)-based methods have been proposed for DTI prediction using heterogeneous biological data. However, existing GNN-based methods only aggregate information from directly connected nodes restricted in a drug-related or a target-related network and are incapable of capturing high-order dependencies in the biological heterogeneous graph. In this paper, we propose a metapath-aggregated heterogeneous graph neural network (MHGNN) to capture complex structures and rich semantics in the biological heterogeneous graph for DTI prediction. Specifically, MHGNN enhances heterogeneous graph structure learning and high-order semantics learning by modeling high-order relations via metapaths. Additionally, MHGNN enriches high-order correlations between drug-target pairs (DTPs) by constructing a DTP correlation graph with DTPs as nodes. We conduct extensive experiments on three biological heterogeneous datasets. MHGNN favorably surpasses 17 state-of-the-art methods over 6 evaluation metrics, which verifies its efficacy for DTI prediction. The code is available at https://github.com/Zora-LM/MHGNN-DTI.

摘要

药物-靶点相互作用(DTI)预测是药物重新定位的关键步骤。已经提出了一些基于图神经网络(GNN)的方法,用于利用异构生物数据进行DTI预测。然而,现有的基于GNN的方法仅聚合来自药物相关或靶点相关网络中直接相连节点的信息,无法捕捉生物异构图中的高阶依赖性。在本文中,我们提出了一种元路径聚合异构图神经网络(MHGNN),用于在生物异构图中捕捉复杂结构和丰富语义,以进行DTI预测。具体而言,MHGNN通过元路径对高阶关系进行建模,增强异构图结构学习和高阶语义学习。此外,MHGNN通过构建以药物-靶点对(DTP)为节点的DTP相关图,丰富了药物-靶点对之间的高阶相关性。我们在三个生物异构数据集上进行了广泛的实验。MHGNN在6个评估指标上显著超过了17种先进方法,验证了其在DTI预测方面的有效性。代码可在https://github.com/Zora-LM/MHGNN-DTI获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验