Li Mei, Cai Xiangrui, Xu Sihan, Ji Hua
Tianjin Key Laboratory of Network and Data Security Technology, China.
College of Computer Science, Nankai University, 300350, Tianjin, China.
Brief Bioinform. 2023 Jan 19;24(1). doi: 10.1093/bib/bbac578.
Drug-target interaction (DTI) prediction is an essential step in drug repositioning. A few graph neural network (GNN)-based methods have been proposed for DTI prediction using heterogeneous biological data. However, existing GNN-based methods only aggregate information from directly connected nodes restricted in a drug-related or a target-related network and are incapable of capturing high-order dependencies in the biological heterogeneous graph. In this paper, we propose a metapath-aggregated heterogeneous graph neural network (MHGNN) to capture complex structures and rich semantics in the biological heterogeneous graph for DTI prediction. Specifically, MHGNN enhances heterogeneous graph structure learning and high-order semantics learning by modeling high-order relations via metapaths. Additionally, MHGNN enriches high-order correlations between drug-target pairs (DTPs) by constructing a DTP correlation graph with DTPs as nodes. We conduct extensive experiments on three biological heterogeneous datasets. MHGNN favorably surpasses 17 state-of-the-art methods over 6 evaluation metrics, which verifies its efficacy for DTI prediction. The code is available at https://github.com/Zora-LM/MHGNN-DTI.
药物-靶点相互作用(DTI)预测是药物重新定位的关键步骤。已经提出了一些基于图神经网络(GNN)的方法,用于利用异构生物数据进行DTI预测。然而,现有的基于GNN的方法仅聚合来自药物相关或靶点相关网络中直接相连节点的信息,无法捕捉生物异构图中的高阶依赖性。在本文中,我们提出了一种元路径聚合异构图神经网络(MHGNN),用于在生物异构图中捕捉复杂结构和丰富语义,以进行DTI预测。具体而言,MHGNN通过元路径对高阶关系进行建模,增强异构图结构学习和高阶语义学习。此外,MHGNN通过构建以药物-靶点对(DTP)为节点的DTP相关图,丰富了药物-靶点对之间的高阶相关性。我们在三个生物异构数据集上进行了广泛的实验。MHGNN在6个评估指标上显著超过了17种先进方法,验证了其在DTI预测方面的有效性。代码可在https://github.com/Zora-LM/MHGNN-DTI获取。