Do Viet-Hung, Prabhu P, Jose Vishal, Yoshida Takefumi, Zhou Yingtang, Miwa Hiroko, Kaneko Takuma, Uruga Tomoya, Iwasawa Yasuhiro, Lee Jong-Min
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore.
Adv Mater. 2023 Mar;35(12):e2208860. doi: 10.1002/adma.202208860. Epub 2023 Feb 7.
Developing highly efficient multifunctional electrocatalysts is crucial for future sustainable energy pursuits, but remains a great challenge. Herein, a facile synthetic strategy is used to confine atomically thin Pd-PdO nanodomains to amorphous Ru metallene oxide (RuO ). The as-synthesized electrocatalyst (Pd RuOx-0.5 h) exhibits excellent catalytic activity toward the pH-universal hydrogen evolution reaction (η = 14 mV in 1 m KOH, η = 12 mV in 0.5 m H SO , and η = 22 mV in 1 m PBS), alkaline oxygen evolution reaction (η = 225 mV), and overall water splitting (E = 1.49 V) with high mass activity and operational stability. Further reduction endows the material (Pd RuOx-2 h) with a promising alkaline oxygen reduction activity, evidenced by high halfway potential, four-electron selectivity, and excellent poison tolerance. The enhanced catalytic activity is attributed to the rational integration of favorable nanostructures, including 1) the atomically thin nanosheet morphology, 2) the coexisting amorphous and defective crystalline phases, and 3) the multi-component heterostructural features. These structural factors effectively regulate the material's electronic configuration and the adsorption of intermediates at the active sites for favorable reaction energetics.
开发高效的多功能电催化剂对未来可持续能源的追求至关重要,但仍然是一个巨大的挑战。在此,采用一种简便的合成策略将原子级薄的Pd-PdO纳米域限制在非晶态Ru金属氧化物(RuO)中。合成的电催化剂(Pd RuOx-0.5 h)对pH通用析氢反应(在1 m KOH中η = 14 mV,在0.5 m H2SO4中η = 12 mV,在1 m PBS中η = 22 mV)、碱性析氧反应(η = 225 mV)和全水解(E = 1.49 V)表现出优异的催化活性,具有高质量活性和操作稳定性。进一步还原赋予材料(Pd RuOx-2 h)有前景的碱性氧还原活性,高半波电位、四电子选择性和优异的抗中毒能力证明了这一点。催化活性的提高归因于有利纳米结构的合理整合,包括1)原子级薄的纳米片形态,2)共存的非晶态和缺陷晶相,以及3)多组分异质结构特征。这些结构因素有效地调节了材料的电子构型以及中间体在活性位点的吸附,以实现有利的反应能量学。