Suppr超能文献

从真菌植物病原体中预测效应蛋白结构可进行进化分析。

Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.

出版信息

Nat Microbiol. 2023 Jan;8(1):174-187. doi: 10.1038/s41564-022-01287-6. Epub 2023 Jan 5.

Abstract

Elucidating the similarity and diversity of pathogen effectors is critical to understand their evolution across fungal phytopathogens. However, rapid divergence that diminishes sequence similarities between putatively homologous effectors has largely concealed the roots of effector evolution. Here we modelled the structures of 26,653 secreted proteins from 14 agriculturally important fungal phytopathogens, six non-pathogenic fungi and one oomycete with AlphaFold 2. With 18,000 successfully predicted folds, we performed structure-guided comparative analyses on two aspects of effector evolution: uniquely expanded sequence-unrelated structurally similar (SUSS) effector families and common folds present across the fungal species. Extreme expansion of lineage-specific SUSS effector families was found only in several obligate biotrophs, Blumeria graminis and Puccinia graminis. The highly expanded effector families were the source of conserved sequence motifs, such as the Y/F/WxC motif. We identified new classes of SUSS effector families that include known virulence factors, such as AvrSr35, AvrSr50 and Tin2. Structural comparisons revealed that the expanded structural folds further diversify through domain duplications and fusion with disordered stretches. Putatively sub- and neo-functionalized SUSS effectors could reconverge on regulation, expanding the functional pools of effectors in the pathogen infection cycle. We also found evidence that many effector families could have originated from ancestral folds conserved across fungi. Collectively, our study highlights diverse effector evolution mechanisms and supports divergent evolution as a major force in driving SUSS effector evolution from ancestral proteins.

摘要

阐明病原体效应物的相似性和多样性对于理解其在真菌植物病原体中的进化至关重要。然而,快速的分化使假定同源效应物之间的序列相似性降低,在很大程度上掩盖了效应物进化的根源。在这里,我们使用 AlphaFold 2 对来自 14 种重要农业真菌植物病原体、6 种非致病性真菌和 1 种卵菌的 26653 种分泌蛋白进行了结构建模。通过成功预测了 18000 种折叠结构,我们对效应物进化的两个方面进行了结构导向的比较分析:独特扩展的序列无关结构相似(SUSS)效应物家族和真菌物种中普遍存在的常见折叠。仅在几种专性生物营养体中,即禾谷布氏白粉菌和禾柄锈菌中发现了谱系特异性 SUSS 效应物家族的极端扩展。高度扩展的效应物家族是保守序列基序的来源,例如 Y/F/WxC 基序。我们鉴定了新的 SUSS 效应物家族类别,其中包括已知的毒力因子,如 AvrSr35、AvrSr50 和 Tin2。结构比较表明,扩展的结构折叠通过结构域重复和与无规伸展融合进一步多样化。假定的亚功能化和新功能化的 SUSS 效应物可以在调节方面重新融合,从而扩大病原体感染周期中效应物的功能池。我们还发现了证据表明,许多效应物家族可能起源于真菌中保守的祖先折叠。总的来说,我们的研究强调了不同的效应物进化机制,并支持分化进化是驱动 SUSS 效应物从祖先蛋白进化的主要力量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0869/9816061/747bcff59b46/41564_2022_1287_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验