Suppr超能文献

基于组织病理学和胶原纤维特征,利用图神经网络对胰腺导管腺癌和慢性胰腺炎进行鉴别。

Differentiation of pancreatic ductal adenocarcinoma and chronic pancreatitis using graph neural networks on histopathology and collagen fiber features.

作者信息

Li Bin, Nelson Michael S, Savari Omid, Loeffler Agnes G, Eliceiri Kevin W

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA.

Morgridge Institute for Research, Madison 53705, WI, USA.

出版信息

J Pathol Inform. 2022 Nov 19;13:100158. doi: 10.1016/j.jpi.2022.100158. eCollection 2022.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. However, the symptoms and radiographic appearance of chronic pancreatitis (CP) mimics that of PDAC, and sometimes the 2 entities can also be difficult to differentiate microscopically. The need for accurate differentiation of PDAC and CP has become a major topic in pancreatic pathology. These 2 diseases can present similar histomorphological features, such as excessive deposition of fibrotic stroma in the tissue microenvironment and inflammatory cell infiltration. In this paper, we present a quantitative analysis pipeline empowered by graph neural networks (GNN) capable of automatic detection and differentiation of PDAC and CP in human histological specimens. Modeling histological images as graphs and deploying graph convolutions can enable the capture of histomorphological features at different scales, ranging from nuclear size to the organization of ducts. The analysis pipeline combines image features computed from co-registered hematoxylin and eosin (H&E) images and Second-Harmonic Generation (SHG) microscopy images, with the SHG images enabling the extraction of collagen fiber morphological features. Evaluating the analysis pipeline on a human tissue micro-array dataset consisting of 786 cores and a tissue region dataset consisting of 268 images, it attained 86.4% accuracy with an average area under the curve (AUC) of 0.954 and 88.9% accuracy with an average AUC of 0.957, respectively. Moreover, incorporating topological features of collagen fibers computed from SHG images into the model further increases the classification accuracy on the tissue region dataset to 91.3% with an average AUC of 0.962, suggesting that collagen characteristics are diagnostic features in PDAC and CP detection and differentiation.

摘要

胰腺导管腺癌(PDAC)是最致命的人类癌症之一。然而,慢性胰腺炎(CP)的症状和影像学表现与PDAC相似,有时这两种实体在显微镜下也难以区分。准确区分PDAC和CP已成为胰腺病理学的一个主要课题。这两种疾病可呈现相似的组织形态学特征,如组织微环境中纤维化基质的过度沉积和炎症细胞浸润。在本文中,我们提出了一种由图神经网络(GNN)驱动的定量分析流程,能够自动检测和区分人类组织学标本中的PDAC和CP。将组织学图像建模为图并部署图卷积可以捕获不同尺度的组织形态学特征,范围从细胞核大小到导管的组织结构。该分析流程将从共配准的苏木精和伊红(H&E)图像以及二次谐波产生(SHG)显微镜图像计算得到的图像特征相结合,SHG图像能够提取胶原纤维的形态学特征。在一个由786个核心组成的人体组织微阵列数据集和一个由268幅图像组成的组织区域数据集上评估该分析流程,其准确率分别达到86.4%,平均曲线下面积(AUC)为0.954,以及准确率88.9%,平均AUC为0.957。此外,将从SHG图像计算得到的胶原纤维拓扑特征纳入模型,进一步将组织区域数据集的分类准确率提高到91.3%,平均AUC为0.962,这表明胶原特征是PDAC和CP检测与区分中的诊断特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4e/9808020/eec77e960fc7/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验