Suppr超能文献

糖尿病在线社区中的社会支持:混合方法内容分析

Social Support in a Diabetes Online Community: Mixed Methods Content Analysis.

作者信息

Da Moura Semedo Cidila, Bath Peter A, Zhang Ziqi

机构信息

Health Informatics Research Group, Information School, University of Sheffield, Sheffield, United Kingdom.

Information Retrieval Research Group, Information School, University of Sheffield, Sheffield, United Kingdom.

出版信息

JMIR Diabetes. 2023 Jan 6;8:e41320. doi: 10.2196/41320.

Abstract

BACKGROUND

Patients with diabetes may experience different needs according to their diabetes stage. These needs may be met via online health communities in which individuals seek health-related information and exchange different types of social support. Understanding the social support categories that may be more important for different diabetes stages may help diabetes online communities (DOCs) provide more tailored support to web-based users.

OBJECTIVE

This study aimed to explore and quantify the categorical patterns of social support observed in a DOC, taking into consideration users' different diabetes stages, including prediabetes, type 2 diabetes (T2D), T2D with insulin treatment, and T2D remission.

METHODS

Data were collected from one of the largest DOCs in Europe: Diabetes.co.uk. Drawing on a mixed methods content analysis, a qualitative content analysis was conducted to explore what social support categories could be identified in users' posts. A total of 1841 posts were coded by 5 human annotators according to a modified version of the Social Support Behavior Code, including 7 different social support categories: achievement, congratulations, network support, seeking emotional support, seeking informational support, providing emotional support, and providing informational support. Subsequently, quantitative content analysis was conducted using chi-square post hoc analysis to compare the most prominent social support categories across different stages of diabetes.

RESULTS

Seeking informational support (605/1841, 32.86%) and providing informational support (597/1841, 32.42%) were the most frequent categories exchanged among users. The overall distribution of social support categories was significantly different across the diabetes stages (χ=287.2; P<.001). Users with prediabetes sought more informational support than those in other stages (P<.001), whereas there were no significant differences in categories posted by users with T2D (P>.001). Users with T2D under insulin treatment provided more informational and emotional support (P<.001), and users with T2D in remission exchanged more achievement (P<.001) and network support (P<.001) than those in other stages.

CONCLUSIONS

This is the first study to highlight what, how, and when different types of social support may be beneficial at different stages of diabetes. Multiple stakeholders may benefit from these findings that may provide novel insights into how these categories can be strategically used and leveraged to support diabetes management.

摘要

背景

糖尿病患者根据其糖尿病阶段可能会有不同的需求。这些需求可以通过在线健康社区来满足,在这些社区中,个人寻求与健康相关的信息并交换不同类型的社会支持。了解对于不同糖尿病阶段可能更重要的社会支持类别,可能有助于糖尿病在线社区(DOCs)为网络用户提供更具针对性的支持。

目的

本研究旨在探索并量化在一个糖尿病在线社区中观察到的社会支持类别模式,同时考虑用户的不同糖尿病阶段,包括糖尿病前期、2型糖尿病(T2D)、接受胰岛素治疗的T2D以及T2D缓解期。

方法

数据收集自欧洲最大的糖尿病在线社区之一:Diabetes.co.uk。采用混合方法内容分析法,首先进行定性内容分析,以探索在用户帖子中可以识别出哪些社会支持类别。5名人工注释员根据社会支持行为代码的修改版本,对总共1841篇帖子进行编码,包括7种不同的社会支持类别:成就、祝贺、网络支持、寻求情感支持、寻求信息支持、提供情感支持和提供信息支持。随后,使用卡方事后分析进行定量内容分析,以比较糖尿病不同阶段最突出的社会支持类别。

结果

寻求信息支持(605/1841,32.86%)和提供信息支持(597/1841,32.42%)是用户之间交流最频繁的类别。社会支持类别的总体分布在糖尿病各阶段之间存在显著差异(χ=287.2;P<.001)。糖尿病前期患者比其他阶段的患者寻求更多的信息支持(P<.001),而T2D患者发布的类别之间没有显著差异(P>.001)。接受胰岛素治疗的T2D患者提供更多的信息和情感支持(P<.001),处于缓解期的T2D患者比其他阶段的患者交流更多的成就(P<.001)和网络支持(P<.001)。

结论

这是第一项强调不同类型的社会支持在糖尿病不同阶段可能在何时、以何种方式以及为何有益的研究。多个利益相关者可能会从这些发现中受益,这些发现可能为如何战略性地利用和借助这些类别来支持糖尿病管理提供新的见解。

相似文献

1
Social Support in a Diabetes Online Community: Mixed Methods Content Analysis.
JMIR Diabetes. 2023 Jan 6;8:e41320. doi: 10.2196/41320.
8
Pragmatics to Reveal Intent in Social Media Peer Interactions: Mixed Methods Study.
J Med Internet Res. 2021 Nov 17;23(11):e32167. doi: 10.2196/32167.

引用本文的文献

1
Online Health Information Seeking: Implications for Self-Management in Hypertension.
Risk Manag Healthc Policy. 2025 Sep 9;18:2951-2965. doi: 10.2147/RMHP.S539905. eCollection 2025.
5
The Role of Alternative Medicine in Managing Type 2 Diabetes: A Comprehensive Review.
Cureus. 2024 Jun 8;16(6):e61965. doi: 10.7759/cureus.61965. eCollection 2024 Jun.
6
Health information needs and feedback of users in the online TCM community.
PLoS One. 2024 Mar 29;19(3):e0301536. doi: 10.1371/journal.pone.0301536. eCollection 2024.
7
Topic modeling and social network analysis approach to explore diabetes discourse on Twitter in India.
Front Artif Intell. 2024 Feb 12;7:1329185. doi: 10.3389/frai.2024.1329185. eCollection 2024.

本文引用的文献

1
Self-efficacy mediates the associations of diabetes distress and depressive symptoms with type 2 diabetes management and glycemic control.
Gen Hosp Psychiatry. 2022 Sep-Oct;78:87-95. doi: 10.1016/j.genhosppsych.2022.06.003. Epub 2022 Jun 18.
2
The Role of Online Social Support in Patients Undergoing Infertility Treatment - A Comparison of Pregnant and Non-pregnant Members.
Health Commun. 2022 Dec;37(14):1724-1730. doi: 10.1080/10410236.2021.1915517. Epub 2021 Apr 15.
6
The relationship between patient perceptions of diabetes and glycemic control: A study of patients living with prediabetes or type 2 diabetes.
Patient Educ Couns. 2019 Nov;102(11):2097-2101. doi: 10.1016/j.pec.2019.05.023. Epub 2019 May 27.
7
Factors of Engagement and Patient-Reported Outcomes in a Stage IV Breast Cancer Facebook Group.
Health Commun. 2020 Jan;35(1):75-82. doi: 10.1080/10410236.2018.1536962. Epub 2018 Oct 23.
9
Effect of Diabetes Online Community Engagement on Health Indicators: Cross-Sectional Study.
JMIR Diabetes. 2018 Apr 24;3(2):e8. doi: 10.2196/diabetes.8603.
10
Should patients with diabetes be encouraged to integrate social media into their care plan?
Future Sci OA. 2018 Jul 31;4(7):FSO323. doi: 10.4155/fsoa-2018-0021. eCollection 2018 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验