Mosquera-Zamudio Andrés, Launet Laëtitia, Tabatabaei Zahra, Parra-Medina Rafael, Colomer Adrián, Oliver Moll Javier, Monteagudo Carlos, Janssen Emiel, Naranjo Valery
Skin Cancer Research Group, INCLIVA, 46010 Valencia, Spain.
Faculty of Medicine, Universitat de València, 46010 Valencia, Spain.
Cancers (Basel). 2022 Dec 21;15(1):42. doi: 10.3390/cancers15010042.
The rise of Artificial Intelligence (AI) has shown promising performance as a support tool in clinical pathology workflows. In addition to the well-known interobserver variability between dermatopathologists, melanomas present a significant challenge in their histological interpretation. This study aims to analyze all previously published studies on whole-slide images of melanocytic tumors that rely on deep learning techniques for automatic image analysis. Embase, Pubmed, Web of Science, and Virtual Health Library were used to search for relevant studies for the systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Articles from 2015 to July 2022 were included, with an emphasis placed on the used artificial intelligence methods. Twenty-eight studies that fulfilled the inclusion criteria were grouped into four groups based on their clinical objectives, including pathologists versus deep learning models ( = 10), diagnostic prediction ( = 7); prognosis ( = 5), and histological features ( = 6). These were then analyzed to draw conclusions on the general parameters and conditions of AI in pathology, as well as the necessary factors for better performance in real scenarios.
人工智能(AI)的兴起在临床病理工作流程中作为一种辅助工具展现出了良好的性能。除了皮肤病理学家之间众所周知的观察者间变异性外,黑色素瘤在组织学解释方面也面临着重大挑战。本研究旨在分析所有先前发表的关于黑素细胞肿瘤全切片图像的研究,这些研究依赖深度学习技术进行自动图像分析。根据系统评价和Meta分析的首选报告项目(PRISMA)清单,使用Embase、Pubmed、Web of Science和虚拟健康图书馆搜索相关研究以进行系统评价。纳入了2015年至2022年7月的文章,重点关注所使用的人工智能方法。28项符合纳入标准的研究根据其临床目标分为四组,包括病理学家与深度学习模型(n = 10)、诊断预测(n = 7)、预后(n = 5)和组织学特征(n = 6)。然后对这些进行分析,以得出关于病理学中AI的一般参数和条件以及在实际场景中实现更好性能的必要因素的结论。