Suppr超能文献

基于非线性车辆模型的自主车辆动态运动规划研究

A Study on Dynamic Motion Planning for Autonomous Vehicles Based on Nonlinear Vehicle Model.

机构信息

Fok Ying Tung Research Institute, Hong Kong University of Science and Technology (HKUST), Guangzhou 511458, China.

Research Centre for Intelligent Transportation, Zhejiang Lab., Hangzhou 311000, China.

出版信息

Sensors (Basel). 2022 Dec 31;23(1):443. doi: 10.3390/s23010443.

Abstract

Autonomous driving technology, especially motion planning and the trajectory tracking method, is the foundation of an intelligent interconnected vehicle, which needs to be improved urgently. Currently, research on path planning methods has improved, but few of the current studies consider the vehicle's nonlinear characteristics in the reference model, due to the heavy computational effort. At present, most of the algorithms are designed by a linear vehicle model in order to achieve the real-time performance at the cost of lost accuracy. To achieve a better performance, the dynamics and kinematics characteristics of the vehicle must be simulated, and real-time computing ensured at the same time. In this article, a Takagi-Sugeno fuzzy-model-based closed-loop rapidly exploring random tree algorithm with on-line re-planning process is applied to build the motion planner, which effectively improves the vehicle performance of dynamic obstacle avoidance, and plans the local obstacle avoidance path in line with the dynamic characteristics of the vehicle. A nonlinear vehicle model is integrated into the motion planner design directly. For fast local path planning mission, the Takagi-Sugeno fuzzy modelling method is applied to the modeling process in the planner design, so that the vehicle state can be directly utilized into the path planner to create a feasible path in real-time. The performance of the planner was evaluated by numerical simulation. The results demonstrate that the proposed motion planner can effectively generate a reference trajectory that guarantees driving efficiency with a lower re-planning rate.

摘要

自动驾驶技术,特别是运动规划和轨迹跟踪方法,是智能互联车辆的基础,需要紧急改进。目前,路径规划方法的研究已经有所改善,但由于计算量大,目前的研究很少考虑参考模型中的车辆非线性特性。目前,大多数算法都是基于线性车辆模型设计的,以牺牲精度为代价来实现实时性能。为了获得更好的性能,必须模拟车辆的动力学和运动学特性,同时确保实时计算。在本文中,应用基于 Takagi-Sugeno 模糊模型的闭环快速探索随机树算法和在线重新规划过程来构建运动规划器,有效地提高了车辆动态避障性能,并规划出符合车辆动态特性的局部避障路径。将非线性车辆模型直接集成到运动规划器设计中。对于快速的局部路径规划任务,将 Takagi-Sugeno 模糊建模方法应用于规划器设计中的建模过程中,以便车辆状态可以直接用于路径规划器中,实时创建可行路径。通过数值模拟评估了规划器的性能。结果表明,所提出的运动规划器可以有效地生成参考轨迹,在较低的重新规划率下保证驾驶效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6662/9824284/d911fd37facf/sensors-23-00443-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验