Newbury Dale E, Ritchie Nicholas W M
National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
MRS Adv. 2022;7(31). doi: 10.1557/s43580-022-00300-8.
NIST DTSA-II is a free, open access, and fully-documented comprehensive software platform for electron-excited X-ray microanalysis with energy dispersive spectrometry (EDS), including tools for quantification, measurement optimization, and spectrum simulation. EDS simulation utilizes a Monte Carlo electron trajectory simulation that includes characteristic and continuum X-ray generation, self-absorption, EDS window absorption, and energy-to-charge conversion leading to peak broadening. Spectra are simulated on an absolute basis considering electron dose and spectrometer parameters. Simulated and measured spectra agree within ± 25% relative for K-shell and L-shell characteristic X-ray peaks from 1 to 11 keV, while the predicted M-shell intensity was found to exceed the measured value by a factor of 1.4-2.2 from 1 to 3 keV. The X-ray continuum (bremsstrahlung) intensity agreed within ± 10% over the photon energy range from 1 to 10 keV for elements from boron to bismuth. Simulated spectra can be used to develop analytical strategy, such as assessing detection of trace constituents.
美国国家标准与技术研究院(NIST)的DTSA-II是一个免费、开放获取且有完整文档记录的综合软件平台,用于能量色散谱(EDS)的电子激发X射线微分析,包括定量分析、测量优化和能谱模拟等工具。EDS模拟采用蒙特卡罗电子轨迹模拟,其中包括特征X射线和连续X射线的产生、自吸收、EDS窗口吸收以及导致峰展宽的能量-电荷转换。能谱是在考虑电子剂量和光谱仪参数的绝对基础上进行模拟的。对于1至11 keV的K壳层和L壳层特征X射线峰,模拟光谱与测量光谱的相对误差在±25%以内,而在1至3 keV范围内,预测的M壳层强度比测量值高出1.4至2.2倍。对于从硼到铋的元素,在1至10 keV的光子能量范围内,X射线连续谱(轫致辐射)强度的误差在±10%以内。模拟光谱可用于制定分析策略,例如评估痕量成分的检测。