Suppr超能文献

STSC-SNN:用于脉冲神经网络的具有时间卷积和注意力机制的时空突触连接

STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks.

作者信息

Yu Chengting, Gu Zheming, Li Da, Wang Gaoang, Wang Aili, Li Erping

机构信息

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China.

Zhejiang University - University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining, China.

出版信息

Front Neurosci. 2022 Dec 23;16:1079357. doi: 10.3389/fnins.2022.1079357. eCollection 2022.

Abstract

Spiking neural networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal information processing capability, low power consumption, and high biological plausibility. The potential to efficiently extract spatio-temporal features makes it suitable for processing event streams. However, existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither of which can extract temporal dependencies adequately. In this work, we take inspiration from biological synapses and propose a Spatio-Temporal Synaptic Connection SNN (STSC-SNN) model to enhance the spatio-temporal receptive fields of synaptic connections, thereby establishing temporal dependencies across layers. Specifically, we incorporate temporal convolution and attention mechanisms to implement synaptic filtering and gating functions. We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks. In addition, we investigate the impact of performance varied spatial-temporal receptive fields and reevaluate the temporal modules in SNNs. Our approach is tested on neuromorphic datasets, including DVS128 Gesture (gesture recognition), N-MNIST, CIFAR10-DVS (image classification), and SHD (speech digit recognition). The results show that the proposed model outperforms the state-of-the-art accuracy on nearly all datasets.

摘要

脉冲神经网络(SNNs)作为神经形态计算中的算法模型之一,因其时间信息处理能力、低功耗和高生物合理性而受到了大量研究关注。其有效提取时空特征的潜力使其适用于处理事件流。然而,SNNs中现有的突触结构几乎都是全连接或空间二维卷积,这两种结构都无法充分提取时间依赖性。在这项工作中,我们从生物突触中获得灵感,提出了一种时空突触连接SNN(STSC-SNN)模型,以增强突触连接的时空感受野,从而建立跨层的时间依赖性。具体来说,我们结合了时间卷积和注意力机制来实现突触滤波和门控功能。我们表明,赋予突触模型时间依赖性可以提高SNNs在分类任务上的性能。此外,我们研究了不同时空感受野对性能的影响,并重新评估了SNNs中的时间模块。我们的方法在神经形态数据集上进行了测试,包括DVS128手势(手势识别)、N-MNIST、CIFAR10-DVS(图像分类)和SHD(语音数字识别)。结果表明,所提出的模型在几乎所有数据集上都优于当前的先进精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48d3/9817103/73254aef8b42/fnins-16-1079357-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验