Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
Pharm Stat. 2023 May-Jun;22(3):531-546. doi: 10.1002/pst.2289. Epub 2023 Jan 10.
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.
篮子试验评估了一种针对多种癌症队列中单一遗传变异的单一药物。经验发现表明,篮子之间的治疗效果可能存在异质性。大多数现代篮子试验设计使用贝叶斯方法。这些方法至少需要指定一个参数,允许篮子之间进行信息共享。在这项研究中,我们通过使用贝叶斯层次模型,为自适应篮子试验的比例参数的先验选择提供了建议。篮子之间的异质性在篮子试验研究中引起了广泛关注,而大量的异质性挑战了贝叶斯层次方法的可交换性基本假设。因此,我们还允许每个分层特定参数与类似分层的参数具有可交换性或不可交换性,使用中期分析中观察到的数据。通过模拟研究,我们基于统计功效和 I 型错误率评估了我们设计的整体性能。我们的研究有助于理解贝叶斯篮子试验设计的性质。