Department of Neurobiology, Osnabrück University, Osnabrück, Germany.
Integrated Bioimaging Facility iBiOs, Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
Brain Res Bull. 2023 Mar;194:13-22. doi: 10.1016/j.brainresbull.2022.12.012. Epub 2023 Jan 7.
The unique morphology of neurons consists of a long axon and a highly variable arbour of dendritic processes, which assort neuronal cells into the main classes. The dendritic tree serves as the main domain for receiving synaptic input. Therefore, to maintain the structure and to be able to plastically change according to the incoming stimuli, molecules and organelles need to be readily available. This is achieved mainly via bi-directional transport of cargo along the microtubule lattices. Analysis of dendritic transport is lagging behind the investigation of axonal transport. Moreover, addressing transport mechanisms in tissue environment is very challenging and, therefore, rare. We employed high-speed volumetric lattice light-sheet microscopy and single particle tracking of truncated KIF1A motor protein lacking the cargo-binding domain. We focused our analysis on dendritic processes of CA1 pyramidal neurons in cultured hippocampal tissue. Analysis of individual trajectories revealed detailed information about stalling and high variability in movement and speed, and biased directionality of KIF1A. Furthermore, we could also observe KIF1A shortly entering into dendritic spines. We provide a workflow to analyse variations in the speed and direction of motor protein movement in dendrites that are either intrinsic properties of the motor domain or depend on the structure and modification of the microtubule trails.
神经元的独特形态由一个长轴突和一个高度可变的树突分支组成,这些分支将神经元细胞分为主要类型。树突作为接收突触输入的主要区域。因此,为了维持结构并根据传入的刺激进行可塑性变化,需要有现成的分子和细胞器。这主要是通过沿着微管晶格双向运输货物来实现的。树突运输的分析落后于对轴突运输的研究。此外,在组织环境中解决运输机制非常具有挑战性,因此很少有研究涉及。我们采用高速体积晶格光片显微镜和缺少货物结合域的截断 KIF1A 运动蛋白的单颗粒跟踪技术。我们的分析集中在培养海马组织中的 CA1 锥体神经元的树突上。对单个轨迹的分析揭示了关于停顿和运动速度的高度可变性以及 KIF1A 的偏向方向性的详细信息。此外,我们还可以观察到 KIF1A 短暂进入树突棘。我们提供了一种分析树突中运动蛋白运动速度和方向变化的工作流程,这些变化要么是运动域的固有特性,要么取决于微管轨迹的结构和修饰。