Devika Neelakantan Thulasi, Katneni Vinaya Kumar, Jangam Ashok Kumar, Suganya Panjan Nathamuni, Shekhar Mudagandur Shashi, Jithendran Karingalakkandy Poochirian
Nutrition Genetics and Biotechnology Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India.
Aquatic Animal Health and Environment Division, Indian Council of Agricultural Research - Central Institute of Brackishwater Aquaculture, Chennai, India.
Environ Microbiome. 2023 Jan 11;18(1):2. doi: 10.1186/s40793-022-00458-6.
Understanding the microbiome is crucial as it contributes to the metabolic health of the host and, upon dysbiosis, may influence disease development. With the recent surge in high-throughput sequencing technology, the availability of microbial genomic data has increased dramatically. Amplicon sequence-based analyses majorly profile microbial abundance and determine taxonomic markers. Furthermore, the availability of genome sequences for various microbial organisms has prompted the integration of genome-scale metabolic modelling that provides insights into the metabolic interactions influencing host health. However, the analysis from a single study may not be consistent, necessitating a meta-analysis.
We conducted a meta-analysis and integrated with constraint-based metabolic modelling approach, focusing on the microbiome of pacific white shrimp Penaeus vannamei, an extensively cultured marine candidate species. Meta-analysis revealed that Acinetobacter and Alteromonas are significant indicators of "health" and "disease" specific taxonomic biomarkers, respectively. Further, we enumerated metabolic interactions among the taxonomic biomarkers by applying a constraint-based approach to the community metabolic models (4416 pairs). Under different nutrient environments, a constraint-based flux simulation identified five beneficial species: Acinetobacter spWCHA55, Acinetobacter tandoii SE63, Bifidobacterium pseudolongum 49 D6, Brevundimonas pondensis LVF1, and Lutibacter profundi LP1 mediating parasitic interactions majorly under sucrose environment in the pairwise community. The study also reports the healthy biomarkers that can co-exist and have functionally dependent relationships to maintain a healthy state in the host.
Toward this, we collected and re-analysed the amplicon sequence data of P. vannamei (encompassing 117 healthy and 142 disease datasets). By capturing the taxonomic biomarkers and modelling the metabolic interaction between them, our study provides a valuable resource, a first-of-its-kind analysis in aquaculture scenario toward a sustainable shrimp farming.
了解微生物组至关重要,因为它有助于宿主的代谢健康,并且在生态失调时可能影响疾病发展。随着高通量测序技术最近的兴起,微生物基因组数据的可用性急剧增加。基于扩增子序列的分析主要描绘微生物丰度并确定分类标记。此外,各种微生物有机体的基因组序列的可用性促使了基因组规模代谢模型的整合,该模型提供了对影响宿主健康的代谢相互作用的见解。然而,单一研究的分析可能不一致,因此需要进行荟萃分析。
我们进行了一项荟萃分析,并结合基于约束的代谢建模方法,重点研究南美白对虾(Penaeus vannamei)的微生物组,这是一种广泛养殖的海洋候选物种。荟萃分析表明,不动杆菌属和交替单胞菌属分别是“健康”和“疾病”特定分类生物标志物的重要指标。此外,我们通过对群落代谢模型(4416对)应用基于约束的方法,列举了分类生物标志物之间的代谢相互作用。在不同的营养环境下,基于约束的通量模拟确定了五个有益物种:不动杆菌属菌株WCHA55、坦多伊不动杆菌SE63、假长双歧杆菌49 D6、庞氏短波单胞菌LVF1和深海噬油菌LP1,它们主要在成对群落的蔗糖环境下介导寄生相互作用。该研究还报告了可以共存并具有功能依赖关系以维持宿主健康状态的健康生物标志物。
为此,我们收集并重新分析了南美白对虾的扩增子序列数据(包括117个健康和142个疾病数据集)。通过捕获分类生物标志物并对它们之间的代谢相互作用进行建模,我们的研究提供了宝贵的资源,这是水产养殖场景中首次进行的此类分析,旨在实现可持续的对虾养殖。