Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.
Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):932-943. doi: 10.1021/acsbiomaterials.2c01279. Epub 2023 Jan 12.
Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1β, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.
重复的 l- 和 d-手性构型决定了聚乳酸(PLA)的立体化学,这影响了其热学和物理化学性质,包括降解谱。临床上,植入 PLA 生物材料的降解会促进长期炎症和过度纤维化,但 PLA 立体化学的作用尚不清楚。此外,尽管不同立体化学的 PLA 在体内引起不同的免疫反应,但这一观察结果尚未在体外得到有效模拟。生物能量学模型被应用于研究 PLA 对含有 >99% l-丙交酯(PLLA)、>99% d-丙交酯(PDLA)和 PLLA 与 PDLA 50/50 共混物(立体复合物 PLA)的免疫细胞反应。立体复合物 PLA 降解产物增加了 IL-1β、TNF-α 和 IL-6 蛋白水平,但不增加 MCP-1。这些前炎性细胞因子的表达是由原代巨噬细胞中糖酵解的增加所驱动的。相比之下,PLLA 和 PDLA 降解产物选择性地增加了 MCP-1 蛋白的表达。尽管 PDLA 增加了氧化磷酸化和糖酵解,但只有 PLLA 增加了氧化磷酸化。对于每种生物材料,糖酵解抑制减少了促炎细胞因子,并显著增加了抗炎(IL-10)蛋白水平;观察到成纤维细胞的代谢变化不同。这些发现为 PLA 的不同立体化学引起的不同免疫反应提供了机制解释,并强调了免疫代谢在应用于医学的生物材料生物相容性中的关键作用。