Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
Methods Enzymol. 2023;678:23-54. doi: 10.1016/bs.mie.2022.09.014. Epub 2022 Nov 26.
Small-angle X-ray scattering (SAXS) is a powerful method for tracking conformational transitions of proteins or soft-matter complexes in solution. However, the interpretation of the experimental data is challenged by the low spatial resolution and the low information content of the data, which lead to a high risk of overinterpreting the data. Here, we illustrate how SAXS data can be integrated into all-atom molecular dynamics (MD) simulation to derive atomic structures or heterogeneous ensembles that are compatible with the data. Besides providing atomistic insight, the MD simulation adds physicochemical information, as encoded in the MD force fields, which greatly reduces the risk of overinterpretation. We present an introduction into the theory of SAXS-driven MD simulations as implemented in GROMACS-SWAXS, a modified version of the GROMACS simulation software. We discuss SAXS-driven parallel-replica ensemble refinement with commitment to the maximum entropy principle as well as a Bayesian formulation of SAXS-driven structure refinement. Practical considerations for running and interpreting the simulations are presented. The methods are freely available via GitLab at https://gitlab.com/cbjh/gromacs-swaxs.
小角 X 射线散射(SAXS)是一种强大的方法,可用于跟踪溶液中蛋白质或软物质复合物的构象转变。然而,实验数据的解释受到低空间分辨率和数据信息量低的挑战,这导致过度解释数据的风险很高。在这里,我们说明如何将 SAXS 数据集成到全原子分子动力学(MD)模拟中,以得出与数据兼容的原子结构或异质集合。除了提供原子分辨率的见解外,MD 模拟还添加了物理化学信息,这些信息编码在 MD 力场中,这大大降低了过度解释的风险。我们介绍了在 GROMACS-SWAXS 中实现的基于 SAXS 的 MD 模拟理论,GROMACS-SWAXS 是 GROMACS 模拟软件的一个修改版本。我们讨论了基于 SAXS 的并行复制集合精修,该方法致力于最大熵原理以及基于贝叶斯的 SAXS 驱动结构精修。还介绍了运行和解释模拟的实用考虑因素。这些方法可在 GitLab 上免费获得,网址为 https://gitlab.com/cbjh/gromacs-swaxs。