Suppr超能文献

胶体溶液中的荧光:对线形的散射与物理化学效应。

Fluorescence in colloidal solutions: Scattering vs physicochemical effects on line shape.

机构信息

Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA.

Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 15;291:122356. doi: 10.1016/j.saa.2023.122356. Epub 2023 Jan 11.

Abstract

Line shapes of anionic fluorescein fluorescence in suspensions of polystyrene nanoparticles (PSNP), anionic and cationic micelles, lipid vesicles, and of laurdan in lipid vesicles were investigated. Computed second harmonic of measured spectra indicated three lines for fluorescein and two for laurdan. Accordingly, fluorescein spectra were fit to three Gaussians and laurdan spectra to two lognormal distributions. Resolved line parameters were examined against particle concentration. Scattering, although wavelength dependent, affected intensity but not line shape. Inner filter effects of scattering on line shape are insignificant because multiple scattering, redirection of scattered photons into the detector, and inclusion of scattered photons in collection and detection minimize wavelength dependent effects. Dominant effects on line width and peak positions are due to physicochemical effects of dye-particle-solvent interactions rather than scattering. Fluorescein does not interact with anionic micelles and lipid vesicles, but remains in the aqueous phase, and responds to pH increase induced by these additives. Blue shift in peak position, decrease in line width, and increase in emission intensity in these systems are like those in NaOH solutions. Fluorescein does interact with cationic micelles and hydrophobic PSNP, and its emission is red shifted. Laurdan in lipid vesicles senses interface polarity. Blue shift and decrease in line width of its emission line indicate decreasing polarity with lipid concentration. Scattering, as well as interactions affect emission intensity. Physicochemical effects distort line shape and modify intrinsic spectra. Line shape changes are better markers than intensity to investigate interactions and reactions.

摘要

研究了聚苯乙烯纳米粒子(PSNP)悬浮液、阴离子和阳离子胶束、脂质体以及脂质体中的 Laurdan 的阴离子荧光素荧光的线形状。测量光谱的计算二次谐波表明荧光素有三条线,Laurdan 有两条线。因此,将荧光素光谱拟合为三个高斯分布,将 Laurdan 光谱拟合为两个对数正态分布。针对粒子浓度检查了可分辨的线参数。尽管散射与波长有关,但它只影响强度而不影响线形状。由于散射的内滤效应,散射对线形状的影响可以忽略不计,因为多次散射、将散射光子重新引导到探测器中以及将散射光子包含在收集和检测中,最小化了与波长有关的影响。对线宽和峰位的主要影响是由于染料-粒子-溶剂相互作用的物理化学效应,而不是散射。荧光素与阴离子胶束和脂质体不相互作用,而是留在水相中,并响应这些添加剂引起的 pH 值增加。在这些体系中,峰位置的蓝移、线宽的减小和发射强度的增加与 NaOH 溶液中的相似。荧光素与阳离子胶束和疏水性 PSNP 相互作用,其发射发生红移。 Laurdan 在脂质体中感知界面极性。其发射线的蓝移和线宽减小表明随着脂质浓度的增加极性降低。散射以及相互作用会影响发射强度。物理化学效应会扭曲线形状并改变固有光谱。与强度相比,线形状变化是研究相互作用和反应的更好标记。

相似文献

1
Fluorescence in colloidal solutions: Scattering vs physicochemical effects on line shape.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 15;291:122356. doi: 10.1016/j.saa.2023.122356. Epub 2023 Jan 11.
2
Complementary Fluorescence Emission and Second Harmonic Spectra Improve Bilayer Characterization.
J Fluoresc. 2020 Jan;30(1):205-212. doi: 10.1007/s10895-020-02487-1. Epub 2020 Jan 18.
4
Lipid Organization in Mixed Lipid Membranes Driven by Intrinsic Curvature Difference.
Biophys J. 2020 Apr 21;118(8):1830-1837. doi: 10.1016/j.bpj.2020.03.009. Epub 2020 Mar 29.
6
Accurate correction method and algorithm of fluorescence secondary inner filter effect (sIEF) in fluorescence quantitative analysis.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Mar 5;288:122147. doi: 10.1016/j.saa.2022.122147. Epub 2022 Nov 23.
7
Membrane lipid domains and dynamics as detected by Laurdan fluorescence.
J Fluoresc. 1995 Mar;5(1):59-69. doi: 10.1007/BF00718783.
9
Coexistence of domains with distinct order and polarity in fluid bacterial membranes.
Photochem Photobiol. 2002 Jul;76(1):1-11. doi: 10.1562/0031-8655(2002)076<0001:codwdo>2.0.co;2.
10
Effect of nanosize micelles of ionic and neutral surfactants on the photophysics of protonated 6-methoxyquinoline: time-resolved fluorescence study.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Mar 5;138:818-26. doi: 10.1016/j.saa.2014.10.118. Epub 2014 Nov 13.

引用本文的文献

1
Fluorescence anisotropy (FA) of anionic dyes bound to ionic and zwitterionic micelles.
J Photochem Photobiol A Chem. 2025 Sep 1;466. doi: 10.1016/j.jphotochem.2025.116401. Epub 2025 Mar 19.

本文引用的文献

1
Radical Diffusion Crossover Phenomenon in Glass-Forming Liquids.
J Phys Chem Lett. 2022 Apr 21;13(15):3510-3515. doi: 10.1021/acs.jpclett.2c00305. Epub 2022 Apr 13.
2
A Spectroscopic Study of Xanthene Dyes on a Polystyrene Surface: an Investigation of Ion-π Interactions at Polymer Interfaces.
J Fluoresc. 2020 Jul;30(4):811-818. doi: 10.1007/s10895-020-02556-5. Epub 2020 May 19.
3
Lipid Organization in Mixed Lipid Membranes Driven by Intrinsic Curvature Difference.
Biophys J. 2020 Apr 21;118(8):1830-1837. doi: 10.1016/j.bpj.2020.03.009. Epub 2020 Mar 29.
4
Complementary Fluorescence Emission and Second Harmonic Spectra Improve Bilayer Characterization.
J Fluoresc. 2020 Jan;30(1):205-212. doi: 10.1007/s10895-020-02487-1. Epub 2020 Jan 18.
5
Behavior of the DPH fluorescence probe in membranes perturbed by drugs.
Chem Phys Lipids. 2019 Sep;223:104784. doi: 10.1016/j.chemphyslip.2019.104784. Epub 2019 Jun 12.
7
Interaction of the β amyloid - Aβ(25-35) - peptide with zwitterionic and negatively charged vesicles with and without cholesterol.
Chem Phys Lipids. 2018 Nov;216:39-47. doi: 10.1016/j.chemphyslip.2018.09.006. Epub 2018 Sep 14.
9
Absorption and Fluorescence Lineshape Theory for Polynomial Potentials.
J Chem Theory Comput. 2016 Dec 13;12(12):5979-5989. doi: 10.1021/acs.jctc.6b00997. Epub 2016 Nov 4.
10
Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study.
Biochim Biophys Acta. 2016 Nov;1858(11):2647-2661. doi: 10.1016/j.bbamem.2016.07.013. Epub 2016 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验