Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139.
Department of Physics, Georgia Institute of Technology, Atlanta 30332.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2214017120. doi: 10.1073/pnas.2214017120. Epub 2023 Jan 17.
Soft materials often display complex behaviors that transition through apparent solid- and fluid-like regimes. While a growing number of microscale simulation methods exist for these materials, reduced-order models that encapsulate the macroscale physics are often desired to predict how external bodies interact with soft media. Such an approach could provide direct insights in diverse situations from impact and penetration problems to locomotion over natural terrains. This work proposes a systematic program to develop three-dimensional (3D) reduced-order models for soft materials from a fundamental basis using continuum symmetries and rheological principles. In particular, we derive a reduced-order, 3D resistive force theory (3D-RFT), which is capable of accurately and quickly predicting the resistive stress distribution on arbitrary-shaped bodies intruding through granular media. Aided by a continuum description of the granular medium, a comprehensive set of spatial symmetry constraints, and a limited amount of reference data, we develop a self-consistent and accurate 3D-RFT. We verify the model capabilities in a wide range of cases and show that it can be quickly recalibrated to different media and intruder surface types. The premises leading to 3D-RFT anticipate application to other soft materials with strongly hyperlocalized intrusion behavior.
软物质通常表现出复杂的行为,这些行为通过明显的固液过渡区来体现。虽然存在越来越多的针对这些材料的微尺度模拟方法,但通常需要封装宏观物理的降阶模型来预测外部物体与软介质的相互作用。这种方法可以为从冲击和穿透问题到在自然地形上的运动等各种情况提供直接的见解。这项工作提出了一个系统的方案,从连续统对称性和流变学原理的基本基础出发,为软物质开发三维(3D)降阶模型。具体来说,我们推导出一种降阶的三维阻力理论(3D-RFT),它能够准确快速地预测任意形状的物体在侵入颗粒介质时的阻力应力分布。借助于颗粒介质的连续统描述、一组全面的空间对称约束和有限数量的参考数据,我们开发了一种自洽且准确的 3D-RFT。我们在广泛的情况下验证了模型的能力,并表明它可以快速重新校准到不同的介质和侵入者表面类型。导致 3D-RFT 的前提预计可应用于具有强烈超局部侵入行为的其他软物质。