Suppr超能文献

AZD3965(一种单羧酸转运蛋白 1 抑制剂)在晚期癌症患者中的 I 期剂量递增研究。

A Phase I Dose-escalation Study of AZD3965, an Oral Monocarboxylate Transporter 1 Inhibitor, in Patients with Advanced Cancer.

机构信息

Cancer Research UK Centre for Drug Development, London, United Kingdom.

Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom.

出版信息

Clin Cancer Res. 2023 Apr 14;29(8):1429-1439. doi: 10.1158/1078-0432.CCR-22-2263.

Abstract

PURPOSE

Inhibition of monocarboxylate transporter (MCT) 1-mediated lactate transport may have cytostatic and/or cytotoxic effects on tumor cells. We report results from the dose-escalation part of a first-in-human trial of AZD3965, a first-in-class MCT1 inhibitor, in advanced cancer.

PATIENTS AND METHODS

This multicentre, phase I, dose-escalation and dose-expansion trial enrolled patients with advanced solid tumors or lymphoma and no standard therapy options. Exclusion criteria included history of retinal and/or cardiac disease, due to MCT1 expression in the eye and heart. Patients received daily oral AZD3965 according to a 3+3 then rolling six design. Primary objectives were to assess safety and determine the MTD and/or recommended phase II dose (RP2D). Secondary objectives for dose escalation included measurement of pharmacokinetic and pharmacodynamic activity. Exploratory biomarkers included tumor expression of MCT1 and MCT4, functional imaging of biological impact, and metabolomics.

RESULTS

During dose escalation, 40 patients received AZD3965 at 5-30 mg once daily or 10 or 15 mg twice daily. Treatment-emergent adverse events were primarily grade 1 and/or 2, most commonly electroretinogram changes (retinopathy), fatigue, anorexia, and constipation. Seven patients receiving ≥20 mg daily experienced dose-limiting toxicities (DLT): grade 3 cardiac troponin rise (n = 1), asymptomatic ocular DLTs (n = 5), and grade 3 acidosis (n = 1). Plasma pharmacokinetics demonstrated attainment of target concentrations; pharmacodynamic measurements indicated on-target activity.

CONCLUSIONS

AZD3965 is tolerated at doses that produce target engagement. DLTs were on-target and primarily dose-dependent, asymptomatic, reversible ocular changes. An RP2D of 10 mg twice daily was established for use in dose expansion in cancers that generally express high MCT1/low MCT4).

摘要

目的

抑制单羧酸转运蛋白(MCT)1 介导的乳酸转运可能对肿瘤细胞具有细胞抑制和/或细胞毒性作用。我们报告了在晚期癌症中首次人体试验中 AZD3965(一种一流的 MCT1 抑制剂)的剂量递增部分的结果。

患者和方法

这项多中心、I 期、剂量递增和剂量扩展试验招募了患有晚期实体瘤或淋巴瘤且无标准治疗选择的患者。排除标准包括由于 MCT1 在眼睛和心脏中的表达而患有视网膜和/或心脏病的病史。患者根据 3+3 然后滚动 6 的设计每日口服接受 AZD3965 治疗。主要目的是评估安全性并确定最大耐受剂量(MTD)和/或推荐的 II 期剂量(RP2D)。剂量递增的次要目标包括测量药代动力学和药效学活性。探索性生物标志物包括 MCT1 和 MCT4 的肿瘤表达、生物影响的功能成像和代谢组学。

结果

在剂量递增期间,40 名患者每天接受 5-30 毫克的 AZD3965 单次或 10 或 15 毫克的 AZD3965 每日两次治疗。治疗出现的不良事件主要为 1 级和/或 2 级,最常见的是视网膜电图变化(视网膜病变)、疲劳、厌食和便秘。7 名每天接受≥20 毫克的患者出现剂量限制毒性(DLT):3 级肌钙蛋白升高(n=1)、无症状眼部 DLT(n=5)和 3 级酸中毒(n=1)。血浆药代动力学显示达到目标浓度;药效学测量表明靶向活性。

结论

AZD3965 在产生靶标结合的剂量下可耐受。DLT 是针对靶标的,主要与剂量相关,是无症状的、可逆转的眼部变化。确定了 10 毫克每日两次的 RP2D,用于在通常表达高 MCT1/低 MCT4 的癌症中进行剂量扩展。

相似文献

2
Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer.
Clin Cancer Res. 2014 Feb 15;20(4):926-937. doi: 10.1158/1078-0432.CCR-13-2270. Epub 2013 Nov 25.
4
7
Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: a phase 1 dose-escalation and dose-expansion study.
Lancet Oncol. 2019 Oct;20(10):1454-1466. doi: 10.1016/S1470-2045(19)30412-7. Epub 2019 Aug 9.
10
First-in-Man Phase I Trial of the Selective MET Inhibitor Tepotinib in Patients with Advanced Solid Tumors.
Clin Cancer Res. 2020 Mar 15;26(6):1237-1246. doi: 10.1158/1078-0432.CCR-19-2860. Epub 2019 Dec 10.

引用本文的文献

1
Natural Killer Cell-Mediated Antitumor Immunity: Molecular Mechanisms and Clinical Applications.
MedComm (2020). 2025 Sep 14;6(9):e70387. doi: 10.1002/mco2.70387. eCollection 2025 Sep.
2
Metabolism, a Blossoming Target for Small-Molecule Anticancer Drugs.
Molecules. 2025 Aug 22;30(17):3457. doi: 10.3390/molecules30173457.
3
Lactylation modification in lung cancer: A review of current research and future directions (Review).
Oncol Rep. 2025 Nov;54(5). doi: 10.3892/or.2025.8981. Epub 2025 Sep 5.
4
Safety of unconventional antibody-drug conjugate L-DOS47 in a phase I/II monotherapy study targeting advanced NSCLC.
Front Oncol. 2025 Aug 11;15:1544967. doi: 10.3389/fonc.2025.1544967. eCollection 2025.
6
Crizotinib: A Novel Strategy to Reverse Immunosuppression in Melanoma by Targeting Lactate Transport.
MedComm (2020). 2025 Jul 21;6(8):e70286. doi: 10.1002/mco2.70286. eCollection 2025 Aug.
7
Immune cell metabolism in cancer drug resistance: Advances in target discovery and clinical translation.
Chin J Cancer Res. 2025 Jun 30;37(3):432-445. doi: 10.21147/j.issn.1000-9604.2025.03.11.
8
Reprogramming of glucose metabolism in pancreatic cancer: mechanisms, implications, and therapeutic perspectives.
Front Immunol. 2025 Jun 24;16:1586959. doi: 10.3389/fimmu.2025.1586959. eCollection 2025.
10
Crossing the Blood-Brain Barrier: Innovations in Receptor- and Transporter-Mediated Transcytosis Strategies.
Pharmaceutics. 2025 May 28;17(6):706. doi: 10.3390/pharmaceutics17060706.

本文引用的文献

1
Targeting Cancer Metabolism and Current Anti-Cancer Drugs.
Adv Exp Med Biol. 2021;1286:15-48. doi: 10.1007/978-3-030-55035-6_2.
2
Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy.
Molecules. 2020 Oct 20;25(20):4831. doi: 10.3390/molecules25204831.
3
Effects of a monocarboxylate transport 1 inhibitor, AZD3965, on retinal and visual function in the rat.
Br J Pharmacol. 2020 Oct;177(20):4734-4749. doi: 10.1111/bph.15239. Epub 2020 Sep 13.
4
A case of malignant hyperlactaemic acidosis appearing upon treatment with the mono-carboxylase transporter 1 inhibitor AZD3965.
Br J Cancer. 2020 Apr;122(8):1141-1145. doi: 10.1038/s41416-020-0727-8. Epub 2020 Feb 20.
5
Drugging cancer metabolism: Expectations vs. reality.
Int Rev Cell Mol Biol. 2019;347:1-26. doi: 10.1016/bs.ircmb.2019.07.007. Epub 2019 Jul 29.
6
F-FDG PET/CT in multiple myeloma: critical insights and future directions.
Eur J Nucl Med Mol Imaging. 2019 May;46(5):1048-1050. doi: 10.1007/s00259-019-04279-7. Epub 2019 Feb 15.
7
FDG-PET/CT in the management of lymphomas: current status and future directions.
J Intern Med. 2018 Oct;284(4):358-376. doi: 10.1111/joim.12813. Epub 2018 Jul 24.
8
Clinical and Functional Relevance of the Monocarboxylate Transporter Family in Disease Pathophysiology and Drug Therapy.
Clin Transl Sci. 2018 Jul;11(4):352-364. doi: 10.1111/cts.12551. Epub 2018 Apr 16.
9
PET/CT in Lymphoma: Current Overview and Future Directions.
Semin Nucl Med. 2018 Jan;48(1):76-81. doi: 10.1053/j.semnuclmed.2017.09.007. Epub 2017 Oct 2.
10
The Glycolytic Switch in Tumors: How Many Players Are Involved?
J Cancer. 2017 Sep 20;8(17):3430-3440. doi: 10.7150/jca.21125. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验