Suppr超能文献

丝网印刷镍锌电池:增材制造与评估方法综述

Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods.

作者信息

Nazri Muhamad Aiman, Lim Lai Ming, Samsudin Zambri, Ali Mohd Yusof Tura, Mansor Idris, Suhaimi Muhammad Irsyad, Meskon Shahrul Razi, Nordin Anis Nurashikin

机构信息

Kulliyyah of Electrical and Computer Engineering, International Islamic University Malaysia, Selangor, Malaysia.

Manufacturing Technology and Innovation, Jabil Circuit Sdn Bhd, Penang, Malaysia.

出版信息

3D Print Addit Manuf. 2021 Jun 1;8(3):176-192. doi: 10.1089/3dp.2020.0095. Epub 2021 Jun 2.

Abstract

The advent of personalized wearable devices has boosted the demand for portable, compact power sources. Compared with lithographic techniques, printed devices have lower fabrication costs, while still maintaining high throughput and precision. These factors make thick film printing or additive manufacturing ideal for the fabrication of low-cost batteries suitable for personalized devices. This article provides comprehensive guidelines for thick-film battery fabrication and characterization, with the focus on printed nickel-zinc (Ni-Zn) batteries. Ni-Zn batteries are a more environmental-friendly option compared with lithium-ion batteries (LIBs) as they are fully recyclable. In this work, important battery fundamentals have been described, especially terms of electrochemistry, basic design approaches, and the printing technology. Different design approaches, such as lateral, concentric, and stacked, are also discussed. Printed batteries can be configured as series or parallel constructions, depending on the power requirements of the application. The fabrication flow of printed battery electrodes for the laboratory-scale prototyping process starts from chemical preparation, mixing, printing, drying, pressing, stacking to finally sealing and testing. Of particular importance is the process of electrolyte injection and pouch sealing for the printed batteries to reduce leakage. This entire process flow is also compared with industrial fabrication flow for LIBs. Criteria for material and equipment selection are also addressed in this article to ensure appropriate electrode consistency and good performance. Two main testing methods cyclic voltammetry for the electrodes and charge-discharge for the battery are also explained in detail to serve as systematic guide for users to validate the functionality of their electrodes. This review article concludes with commercial applications of printed electrodes in the field of health and personalized wearable devices. This work indicates that printed Ni-Zn and other zinc alkaline batteries have a promising future. The success of these devices also opens up different areas of research, such as ink rheology, composition, and formulation of ink using sustainable sources.

摘要

个性化可穿戴设备的出现推动了对便携式、紧凑型电源的需求。与光刻技术相比,印刷设备的制造成本更低,同时仍能保持高产量和高精度。这些因素使得厚膜印刷或增材制造成为制造适用于个性化设备的低成本电池的理想选择。本文提供了厚膜电池制造和表征的全面指南,重点是印刷镍锌(Ni-Zn)电池。与锂离子电池(LIB)相比,Ni-Zn电池是一种更环保的选择,因为它们可以完全回收利用。在这项工作中,描述了重要的电池基本原理,特别是电化学、基本设计方法和印刷技术方面。还讨论了不同的设计方法,如横向、同心和堆叠式。印刷电池可以根据应用的功率要求配置为串联或并联结构。实验室规模原型制作过程中印刷电池电极的制造流程从化学制备、混合、印刷、干燥、压制、堆叠开始,最终进行密封和测试。对于印刷电池来说,特别重要的是电解液注入和软包密封过程,以减少泄漏。本文还将整个工艺流程与LIB的工业制造流程进行了比较。本文还讨论了材料和设备选择的标准,以确保电极具有适当的一致性和良好的性能。还详细解释了两种主要的测试方法,即电极的循环伏安法和电池的充放电法,为用户验证其电极的功能提供系统指导。这篇综述文章最后介绍了印刷电极在健康和个性化可穿戴设备领域的商业应用。这项工作表明,印刷Ni-Zn电池和其他锌碱性电池有着广阔的前景。这些设备的成功也开辟了不同的研究领域,如油墨流变学、成分以及使用可持续来源的油墨配方。

相似文献

1
Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods.
3D Print Addit Manuf. 2021 Jun 1;8(3):176-192. doi: 10.1089/3dp.2020.0095. Epub 2021 Jun 2.
2
Advances and Future Challenges in Printed Batteries.
ChemSusChem. 2015 Nov;8(21):3539-55. doi: 10.1002/cssc.201500657. Epub 2015 Sep 25.
3
Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes.
ACS Omega. 2019 Sep 30;4(16):16781-16788. doi: 10.1021/acsomega.9b01545. eCollection 2019 Oct 15.
4
3D Printing of Customized Li-Ion Batteries with Thick Electrodes.
Adv Mater. 2018 Apr;30(16):e1703027. doi: 10.1002/adma.201703027. Epub 2018 Mar 15.
5
Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges.
Heliyon. 2022 Dec 27;8(12):e12623. doi: 10.1016/j.heliyon.2022.e12623. eCollection 2022 Dec.
8
3D-Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Li-Ion Batteries.
Small. 2023 Jan;19(3):e2205817. doi: 10.1002/smll.202205817. Epub 2022 Nov 21.
9
High-Power Aqueous Zinc-Ion Batteries for Customized Electronic Devices.
ACS Nano. 2018 Dec 26;12(12):11838-11846. doi: 10.1021/acsnano.8b02744. Epub 2018 Nov 8.
10
Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs).
Nanomaterials (Basel). 2022 Nov 13;12(22):3997. doi: 10.3390/nano12223997.

本文引用的文献

1
Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries.
Small. 2018 Nov;14(44):e1801929. doi: 10.1002/smll.201801929. Epub 2018 Aug 29.
2
Soft Robotics.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4258-4273. doi: 10.1002/anie.201800907. Epub 2018 Mar 8.
3
Biomedical Diagnostics Enabled by Integrated Organic and Printed Electronics.
Anal Chem. 2017 Jul 18;89(14):7447-7454. doi: 10.1021/acs.analchem.7b01012. Epub 2017 Jun 30.
4
Stretchable Biofuel Cells as Wearable Textile-based Self-Powered Sensors.
J Mater Chem A Mater. 2016 Dec 21;4(47):18342-18353. doi: 10.1039/C6TA08358G. Epub 2016 Nov 7.
5
Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module.
Sci Adv. 2017 Mar 8;3(3):e1601314. doi: 10.1126/sciadv.1601314. eCollection 2017 Mar.
6
Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries.
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9681-9687. doi: 10.1021/acsami.6b16560. Epub 2017 Mar 8.
7
Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.
ACS Appl Mater Interfaces. 2017 Feb 22;9(7):6390-6400. doi: 10.1021/acsami.6b14719. Epub 2017 Feb 10.
8
A Flexible Quasi-Solid-State Nickel-Zinc Battery with High Energy and Power Densities Based on 3D Electrode Design.
Adv Mater. 2016 Oct;28(39):8732-8739. doi: 10.1002/adma.201603038. Epub 2016 Aug 26.
10
Ultraflexible organic photonic skin.
Sci Adv. 2016 Apr 15;2(4):e1501856. doi: 10.1126/sciadv.1501856. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验