Welby Emily, Ebert Allison D
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Glia. 2023 May;71(5):1311-1332. doi: 10.1002/glia.24340. Epub 2023 Jan 18.
Spinal muscular atrophy (SMA) is characterized by the loss of the lower spinal motor neurons due to survival motor neuron (SMN) deficiency. The motor neuron cell autonomous and non-cell autonomous disease mechanisms driving early glutamatergic dysfunction, a therapeutically targetable phenotype prior to motor neuron cell loss, remain unclear. Using microelectrode array analysis, we demonstrate that the secretome and cell surface proteins needed for proper synaptic modulation are likely disrupted in human SMA astrocytes and lead to diminished motor neuron activity. While healthy astrocyte conditioned media did not improve SMA motor neuron activity, SMA motor neurons robustly responded to healthy astrocyte neuromodulation in direct contact cultures. This suggests an important role of astrocyte synaptic-associated plasma membrane proteins and contact-mediated cellular interactions for proper motor neuron function in SMA. Specifically, we identified a significant reduction of the glutamate Na dependent excitatory amino acid transporter EAAT1 within human SMA astrocytes and SMA lumbar spinal cord tissue. The selective inhibition of EAAT1 in healthy co-cultures phenocopied the diminished neural activity observed in SMA astrocyte co-cultures. Caveolin-1, an SMN-interacting protein previously associated with local translation at the plasma membrane, was abnormally elevated in human SMA astrocytes. Although lentiviral SMN delivery to SMA astrocytes partially rescued EAAT1 expression, limited activity of healthy motor neurons was still observed in SMN-transduced SMA astrocyte co-cultures. Together, these data highlight the detrimental impact of astrocyte-mediated disease mechanisms on motor neuron function in SMA and that SMN delivery may be insufficient to fully restore astrocyte function at the synapse.
脊髓性肌萎缩症(SMA)的特征是由于生存运动神经元(SMN)缺乏导致下脊髓运动神经元丧失。驱动早期谷氨酸能功能障碍的运动神经元细胞自主和非细胞自主疾病机制尚不清楚,而谷氨酸能功能障碍是运动神经元细胞丧失之前的一个可治疗的表型。通过微电极阵列分析,我们证明人类SMA星形胶质细胞中适当突触调制所需的分泌组和细胞表面蛋白可能被破坏,并导致运动神经元活动减弱。虽然健康星形胶质细胞条件培养基不能改善SMA运动神经元活动,但在直接接触培养中,SMA运动神经元对健康星形胶质细胞的神经调节有强烈反应。这表明星形胶质细胞突触相关质膜蛋白和接触介导的细胞相互作用在SMA中对适当的运动神经元功能具有重要作用。具体而言,我们发现人类SMA星形胶质细胞和SMA腰脊髓组织中谷氨酸钠依赖性兴奋性氨基酸转运体EAAT1显著减少。在健康共培养物中选择性抑制EAAT1可模拟在SMA星形胶质细胞共培养物中观察到的神经活动减弱。小窝蛋白-1是一种先前与质膜局部翻译相关的SMN相互作用蛋白,在人类SMA星形胶质细胞中异常升高。虽然将慢病毒SMN递送至SMA星形胶质细胞可部分挽救EAAT1表达,但在转导SMN的SMA星形胶质细胞共培养物中仍观察到健康运动神经元的活性有限。总之,这些数据突出了星形胶质细胞介导的疾病机制对SMA中运动神经元功能的有害影响,并且SMN递送可能不足以完全恢复突触处的星形胶质细胞功能。