Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069Dresden, Germany.
Integrated Centre for Applied Physics and Photonic Materials and Centre for Advancing Electronics Dresden (cfaed), Technical University of Dresden, Nöthnitzer Straße 61, 01187Dresden, Germany.
ACS Nano. 2023 Feb 14;17(3):2399-2410. doi: 10.1021/acsnano.2c09482. Epub 2023 Jan 20.
Perovskite nanocrystals are high-performance, solution-processed materials with a high photoluminescence quantum yield. Due to these exceptional properties, perovskites can serve as building blocks for metasurfaces and are of broad interest for photonic applications. Here, we use a simple grating configuration to direct and amplify the perovskite nanocrystals' original omnidirectional emission. Thus far, controlling these radiation properties was only possible over small areas and at a high expense, including the risks of material degradation. Using a soft lithographic printing process, we can now reliably structure perovskite nanocrystals from the organic solution into light-emitting metasurfaces with high contrast on a large area. We demonstrate the 13-fold amplified directional radiation with an angle-resolved Fourier spectroscopy, which is the highest observed amplification factor for the perovskite-based metasurfaces. Our self-assembly process allows for scalable fabrication of gratings with predefined periodicities and tunable optical properties. We further show the influence of solution concentration on structural geometry. By increasing the perovskite concentration 10-fold, we can produce waveguide structures with a grating coupler in one printing process. We analyze our approach with numerical modeling, considering the physiochemical properties to obtain the desired geometry. This strategy makes the tunable radiative properties of such perovskite-based metasurfaces usable for nonlinear light-emitting devices and directional light sources.
钙钛矿纳米晶体是一种高性能的、可溶液处理的材料,具有高光致发光量子产率。由于这些特殊的性质,钙钛矿可以作为亚表面的构建块,并且在光子学应用中受到广泛关注。在这里,我们使用简单的光栅结构来引导和放大钙钛矿纳米晶体的原始各向同性发射。到目前为止,控制这些辐射特性只能在小面积上以高代价实现,包括材料降解的风险。使用软光刻印刷工艺,我们现在可以从有机溶液中将钙钛矿纳米晶体可靠地构造为大面积上具有高对比度的发光亚表面。我们通过角度分辨傅里叶光谱证明了 13 倍的放大定向辐射,这是基于钙钛矿的亚表面观察到的最高放大因子。我们的自组装工艺允许以可预测的周期性和可调谐的光学特性来大规模制造光栅。我们进一步展示了溶液浓度对结构几何形状的影响。通过将钙钛矿浓度提高 10 倍,我们可以在一次印刷过程中制作具有光栅耦合器的波导结构。我们通过数值建模分析了我们的方法,考虑了物理化学性质以获得所需的几何形状。这种策略使基于钙钛矿的亚表面的可调谐辐射特性可用于非线性发光器件和定向光源。