Suppr超能文献

自适应遥感范式,用于癫痫抽搐发作的实时警报。

Adaptive Remote Sensing Paradigm for Real-Time Alerting of Convulsive Epileptic Seizures.

机构信息

Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands.

出版信息

Sensors (Basel). 2023 Jan 14;23(2):968. doi: 10.3390/s23020968.

Abstract

Epilepsy is a debilitating neurological condition characterized by intermittent paroxysmal states called fits or seizures. Especially, the major motor seizures of a convulsive nature, such as tonic-clonic seizures, can cause aggravating consequences. Timely alerting for these convulsive epileptic states can therefore prevent numerous complications, during, or following the fit. Based on our previous research, a non-contact method using automated video camera observation and optical flow analysis underwent field trials in clinical settings. Here, we propose a novel adaptive learning paradigm for optimization of the seizure detection algorithm in each individual application. The main objective of the study was to minimize the false detection rate while avoiding undetected seizures. The system continuously updated detection parameters retrospectively using the data from the generated alerts. The system can be used under supervision or, alternatively, through autonomous validation of the alerts. In the latter case, the system achieved self-adaptive, unsupervised learning functionality. The method showed improvement of the detector performance due to the learning algorithm. This functionality provided a personalized seizure alerting device that adapted to the specific patient and environment. The system can operate in a fully automated mode, still allowing human observer to monitor and override the decision process while the algorithm provides suggestions as an expert system.

摘要

癫痫是一种使人虚弱的神经系统疾病,其特征是间歇性阵发性状态,称为发作或癫痫。特别是强直-阵挛性发作等具有痉挛性质的主要运动性发作,可能会导致加重的后果。因此,及时对这些痉挛性癫痫状态发出警报可以预防发作期间或之后的许多并发症。基于我们之前的研究,一种使用自动摄像机观察和光流分析的非接触方法已经在临床环境中进行了现场试验。在这里,我们提出了一种新的自适应学习范例,用于优化每个应用程序中的癫痫检测算法。该研究的主要目标是在避免未检测到的发作的同时,最小化假阳性率。该系统使用生成警报的数据进行回溯式地更新检测参数。该系统可以在监督下使用,或者通过对警报的自主验证来使用。在后一种情况下,系统实现了自适应、无监督的学习功能。由于学习算法,该方法提高了探测器的性能。该功能提供了一种个性化的癫痫发作警报装置,适用于特定的患者和环境。该系统可以在全自动模式下运行,仍然允许人类观察者在算法提供建议作为专家系统时进行监测和覆盖决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c62b/9862933/894be7b86b06/sensors-23-00968-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验