Suppr超能文献

一种基于深度学习的模型,采用混合特征提取方法进行消费者情绪分析。

A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis.

作者信息

Kaur Gagandeep, Sharma Amit

机构信息

Research Scholar at Department of CSE, Lovely Professional University, Punjab, India.

Symbiosis Institute of Technology (SIT), Affiliated to Symbiosis International (Deemed University), Pune, India.

出版信息

J Big Data. 2023;10(1):5. doi: 10.1186/s40537-022-00680-6. Epub 2023 Jan 13.

Abstract

There is an exponential growth in textual content generation every day in today's world. In-app messaging such as Telegram and WhatsApp, social media websites such as Instagram and Facebook, e-commerce websites like Amazon, Google searches, news publishing websites, and a variety of additional sources are the possible suppliers. Every instant, all these sources produce massive amounts of text data. The interpretation of such data can help business owners analyze the social outlook of their product, brand, or service and take necessary steps. The development of a consumer review summarization model using Natural Language Processing (NLP) techniques and Long short-term memory (LSTM) to present summarized data and help businesses obtain substantial insights into their consumers' behavior and choices is the topic of this research. A hybrid approach for analyzing sentiments is presented in this paper. The process comprises pre-processing, feature extraction, and sentiment classification. Using NLP techniques, the pre-processing stage eliminates the undesirable data from input text reviews. For extracting the features effectively, a hybrid method comprising review-related features and aspect-related features has been introduced for constructing the distinctive hybrid feature vector corresponding to each review. The sentiment classification is performed using the deep learning classifier LSTM. We experimentally evaluated the proposed model using three different research datasets. The model achieves the average precision, average recall, and average F1-score of 94.46%, 91.63%, and 92.81%, respectively.

摘要

在当今世界,文本内容生成量每天都在呈指数级增长。诸如Telegram和WhatsApp之类的应用内消息、Instagram和Facebook之类的社交媒体网站、亚马逊之类的电子商务网站、谷歌搜索、新闻发布网站以及各种其他来源都是可能的供应方。每时每刻,所有这些来源都会产生大量的文本数据。对这些数据的解读可以帮助企业主分析其产品、品牌或服务的社会前景,并采取必要措施。本研究的主题是利用自然语言处理(NLP)技术和长短期记忆(LSTM)开发一种消费者评论摘要模型,以呈现汇总数据,并帮助企业深入了解消费者的行为和选择。本文提出了一种用于分析情感的混合方法。该过程包括预处理、特征提取和情感分类。在预处理阶段,使用NLP技术从输入文本评论中消除不良数据。为了有效地提取特征,引入了一种包含评论相关特征和方面相关特征的混合方法,用于构建与每条评论相对应的独特混合特征向量。情感分类使用深度学习分类器LSTM进行。我们使用三个不同的研究数据集对所提出的模型进行了实验评估。该模型的平均精确率、平均召回率和平均F1分数分别达到了94.46%、91.63%和92.81%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验